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1.0 Introduction

1.1 Introduction

Ultrashort wavelength-tunable optical pulses are useful in time resolved study of ul-
trafast processes in semicoductors and molecular vibrations. However, the existing
wavelength-tunable lasers, such as dye lasers, color-center lasers, and Ti:sapphire
laser, only cover a portion of the spectral range from visible to near infrared. In the
spectral range of wavelength longer than 2 pm, wavelength-tunable laser pulses had
not been available except for several particular wavelengths, such as the recently
developed solid state lasers doped with Er, Tm, or Ho and CO, laser.

With the advances in the development of various nonlinear crystals and the
techniques of generating femtosecond and picosecond continuous wave (cw) mode-
locked pulses, difference-frequency generation and optical parametric generation
became promising to generate wavelength-tunable optical pulses. In order to gener-
ate wavelength-tunable pulses by use of difference-frequency generation, one fixed-
wavelength pulsed laser and one wavelength-tunable pulsed laser have to be used.
However, only one pump laser is required in optical parametric generation and
wavelength tuning is simply achieved by tuning the nonlinear crystal. Figure 1.1
shows the transmission windows of various nonlinear crystals and the wavelength
range of several existing lasers. It can be seen clearly that the wide range of
transmission windows of various nonlinear crystals offers a possibility to generate
wavelength-tunable pulses which cover the visible to infrared range. The goal of

this project is to efficiently generate wavelength-tunable ultrashort optical pulses.
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Figure 1: Transmission windows of various nonlinear crystals(Upper half) and
wavelength range of several existing lasers(Lower half)




A brief discussion on the background of synchronously pumped optical para-
metric oscillators (OPOs), previous theoretical approaches and their deficiencies, a
summary of previous experimental demonstrations, and outline of this report are

given in this section.

1.2 Background

In recent years, there has been a renewed interest in parametric generation of
wavelength-tunable ultrashort pulses. This is largely due to recent developments
in two fundamental areas of research in the field of nonlinear optics. First, more
advanced methods in crystal growth technology produced high-quality nonlinear
optical crystals with higher nonlinearity, wider transmission range, and higher
damage threshold. Second, recent developments in laser technology made more
efficient pump sources of picosecond and femtosecond mode-locked lasers readily
available. Depending on the experimental conditions, such as the energy and
repetition rate of the pump pulses, different approaches can be taken for efficient
parametric generation of these ultrashort pulses. With pump pulses of high pulse
energy but low repetition rate, direct traveling-wave optical parametric generation
with single or multiple stages is often efficient enough [1, 2]. If a second pulsed laser
source with wavelength tunability is available and is synchronized to the pump
pulses, wavelength tunable pulses at the difference frequency can be generated
simply by difference-frequency generation [3]. However, with a single pump source
of cw mode-locked picosecond or femtosecond pulses at a high repetition rate but
low individual pulse energy, the most efficient approach is the cw synchronously

pumped OPO [4, 5]. Very efficient cw synchronously pumped OPOs with wide



wavelength tuning ranges have recently been demonstrated for the generation of
both picosecond [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] and femtosecond [17, 18, 19,
20, 21, 22, 23, 24, 25, 26] pulses.

1.3 Previous Theoretical Approach

As much as the recent interest in OPOs is high, much of the theoretical studies an-
alyzing OPOs have been done since the birth of nonlinear optics in the early 60’s.
However, much of the studies have been performed for the cw and quasi-cw sys-
tems. Only a few groups have analyzed the theoretical model of cw synchronously
pumped optical parametric oscillators which is the system of our concern. From
these groups, several efforts are worth mentioning. Becker et al. [27] have consid-
ered a degenerate case, in which the signal and the idler wavelengths are equal,
and derived some approximate solutions only for a few special cases. The more
general degenerate OPO cases were analyzed through numerically solving the cou-
pled wave equations. This method, however, is time consuming and is not efficient
in studying the various effects of the OPO. Moreover, the synchronously pumped
OPO was only considered for the plane wave case [27]. Although more realistic
approaches in analyzing the OPO system were undertaken by several groups using
the Gaussian beams on the parametric interactions and on OPOs, their studies
were limited to the quasi-steady-state case in which the continuous-wave (time-
independent) solutions of the parametric interaction are assumed at each instant
[28, 29, 30, 31, 32].

A more complete, efficient method for analyzing various effects of the syn-

chronously pumped OPO was not available until the two recent publications by




Cheung and Liu [4, 5]. In Ref. [4], a theoretical model for cw synchronously
pumped OPOs was developed and detailed numerical simulations were carried out
to describe the general characteristics of cw synchronously pumped OPOs. In a
subsequent extension [5] of this model, the spatial effects of the interacting beams
in a generally anisotropic nonlinear crystal were considered, various nonlinear crys-
tals for parametric generation of infrared pulses were compared for their relative
efficiencies, and some useful design criteria for practical systems were established
[5). Many significant characteristics of cw synchronously pumped OPOs predicted
by these analyses have been verified by recent experimental results [6, 11, 14, 16].

The temporal effects, including temporal walk-off and group-velocity-dispersion,
of the interacting pulses in parametric systems were considered in both the original
and extended models of Cheung and Liu [4, 5]. In these models, these temporal
effects appear in three terms, two containing first-order time derivatives and one
containing second-order time derivatives either in the final master differential equa-
tion describing a cw synchronously pumped OPO. When the master differential
equation including these terms is solved, the temporal effects are automatically ac-
counted for. In Ref. [4], a detailed numerical simulation was performed to include
the temporal effects in the coupled wave equations and described many detailed
characteristics of the parametric pulses. However, this type of analysis is time con-
suming and complicated and did not address the issues of more practical questions,
such as; How do the effective parametric gain and efliciency of a system change
with varying pulsewidth and varying signal wavelength? and; What is the optimal
crystal length for a femtosecond OPO? Although the extended model in Ref. [5]

was more practical in answering such questions for various nonlinear crystals in



a synchronously pumped OPO, only the spatial effects were treated extensively
while the temporal effects were only included as perturbations to the solution of
the coupled wave equations. Clearly, the temporal effects become more important
than the spatial effects as the pulses become shorter. When working with systems
generating picosecond and, in particular, femtosecond pulses, one often faces these
practical questions. As we shall see in the following sections, for femtosecond sys-
tems the limitations imposed by the temporal effects often become more important
than those imposed by the spatial effects. Although some criteria were set in the
extended model of Cheung and Liu [5] for the limitation of useful crystal length
due to temporal effects, a more detailed analysis is clearly needed to address these
questions without having to numerically solve the master differential equation.
Therefore, to answer such practical questions often asked by many, we present a
method for analyzing the OPO systems with various crystal lengths, pulsewidths,

and beam waists.

1.4 Previous Experimental Demonstrations

The most efficient way to generate wavelength-tunable ultrashort optical pulses
by using femtosecond or picosecond mode-locked pulses at high repetition rate
with low pulse energy is the sychronously pumped optical parametric oscillator
(OPO). For many years OPO pumped by Q-switched mode-locked lasers have
been demonstrated to generate picosecond wavelength-tunable pulses from visible
to mid-infrared[33, 34, 35, 36]. However, the pulsewidth and the amplitude of these

pulses are not constant and the pulses are not truly repetitive.




Piskarskas et al. [6] first demonstrated a doubly resonant cw mode-locked syn-
chronously pumped optical parametric oscillator in 1988 by use of a Ba,NaNbsO,5
crystal and a cw mode-locked Nd:YAG laser. The advantage of the doubly reso-
nant OPO is the low pump threshold. The disadvantage of the doubly resonant
OPC is the poor output stability.

In 1989 Edelstein et al. [17] first demonstrated a cw mode-locked KTP-based
singly resonant OPQO. The nonlinear crystal of the OPO is located inside the cavity
of a colliding-pulse passively mode-locked dye laser. Mak et al. [19] demonstrated
the first externally synchronously pumped, singly resonant OPO which produced
220 fs pulses tunable from 1200 to 1290 nm with an output power of 30 mW. The
nonlinear crystal used was KTP and the pump source was a hybridly mode-locked
dye laser.

Since then several research groups have demonstrated various synchronously
pumped OPOs based on different nonlinear crystals and different pumped lasers.
Most of the femtosecond OPOs used Ti:sapphire laser as the pump sc;urce and
the nonlinear crystals used in the OPOs included KTP[18, 20, 21, 24], KTA[22],
CTA[25], and RTA[37]. Some picosecond OPOs also used Ti:sapphire laser as a
pump source[9, 38]. Nd:YLF and Nd:YAG lasers and their second-harmonic were
often used as the pump source for the picosecond OPOs and the nonlinear crystals
included KTP(7, 8, 10, 11}, KTA[39] and LBO[13, 12, 15]. The OPOs mentioned
above covered the spectral range from 800 nm to 3000 nm.

Cheung et al. [16] first used AgGaS, as the nonlinear crystal for the OPO
and an actively mode-locked Nd:YAG laser as pump source. Due to the large

transmission windows of AgGaS,, tunable pulses around 5.5 pm were generated.



OPOs based on CTA[40] and KTP[41] were also demonstrated to produce tun-
able pulses from 3 to 4 um. Visible range OPOs were also achieved by using
frequency-doubled Ti:sapphire laser pulses as pump source[26, 42] and by using an
intracavity-frequency-doubled femtosecond OPO based on RTA[43].

In this report, we present the experimental work to generate wavelength-tunable
optical pulses based on a novel picosecond cw mode-locked Nd:YLF laser. This
laser can be mode-locked either actively or passively, producing 10 W average
power of 30 ps and 6.4 ps pulses, respectively. The passive mode-locking mechanism
is additive-pulse mode-locking (APM). Due to the high peak power of these laser
pulses, the ultimate goal is to generate optical pulses tunable from visible to mid-

infrared by using only one pump source.

1.5 Outline of The Report

Because the extensive analysis on the formulations of coupled traveling wave equa-
tions using Gaussian beam profile and their transformation to the plane wave
equations has been done in Refs. [4] and [5], only a brief summary of the key for-
mulations is presented in section 1.5. Since the previous model did not explicitly
consider the temporal effects in the calculation of the OPO gain, the incorporation
of the temporal effects into this theory is also presented in section 1.5. A brief
theoretical background and the method for maximizing the parametric efficiency
using the noncollinear phase matching are also discussed.

The detailed simulations of this theoretical model have been carried out in
section 2.5. Special attention is paid to the collinear phase matching geometry

since it is most widely used. Simulations on noncollinear phase matching is also




included in section 2.5. The method for the maximization of the parametric effi-
ciency coeflicient and the advantages and the limitations of the noncollinear phase
matching geometry are also presented with pertinent comparisons of the important
parameters in both the collinear and noncollinear phase matching geometries.

In section 3.2.3 the experimental setup and the noise characteristics of the pump
laser systems are described. In section 3.2.3 the efforts to produce wavelength-
tunable pulses in the range of 10-11 pm from a picosecond AgGaS,-based OPO
are presented. In section 3.2.3 the characteristics of a singly resonant OPO syn-
chronously pumped by frequency-doubled APM Nd:YLF laser pulses are described.
In section 3.2.3 two different approaches to generate femtosecond pump pulses are
presented and discussed. The efforts to produce femtosecond wavelength-tunable
pulses are also included. A summary of the results and the possible future research

are given as a conclusion in the final section.




2.0 Theory of Parametric Gain

In this section, the derivation and formulation of the theory, which contains
both spatial and temporal effects, are presented. The effective gain of the para-
metric process involving ultrashort pulses is derived from this theory. Since the
spatial effects have been thoroughly discussed in Ref. [5], the bulk of this section
discusses the incorporation of temporal effects to the previous theory. In the fol-
lowing sections, pertinent formulations in the treatment of the spatial effects in
Ref. [5] are summarized, and then the extension, which now includes the temporal
effects, to the previous theory is thoroughly treated. Additionally, due to recent
interest in the effects of noncollinear phase matching conditions on the parametric
efficiency, the formulation of optimal parametric efficiency under both collinear

and noncollinear phase matching conditions is also given.

2.1 Theoretical Approach

Optical parametrié oscillation is a special case of difference-frequency generation.
In general, the theory of difference-frequency generation parallels that of sum-
frequency generation. In fact, difference-frequency generation is considered as an
inverse process of sum-frequency generation which is manifested by energy flow
from the two lower-frequency fields to the sum frequency field. While difference-
frequency generation is initiated by two pump beams of more or less comparable
intensities, one at sum-frequency and the other at either of two lower-frequencies,
it is also initiated by a single pump beam of strong intensity. There is no definite
distinction between these two processes, with the exception of two input condi-

tions described above. In general, the latter is called parametric amplification.

10




Moreover, if an optical cavity is used, the overall gain of parametric amplification
is increased [44]. Then, a coherent output at one of two lower-frequencies can
also build up from a noise input and oscillate in an optical cavity. This process,
therefore, is called parametric oscillation.

Parametric oscillation is dictated by two fundamental concepts: conservation

of energy and phase-matching condition. Conservation of energy is given by,
w3 = uwq + Wa, (1)

with a signal pulse at a central frequency w; and an idler pulse at w; by a strong
pump pulse at ws. In difference-frequency mixing, a ”pump” at frequency wz mixes
with a ”signal” at w; to generate an "idler” at w; = w3 — w;. The phase matching
condition is given by,

ks = k; + ko, (2)

where K;, k2, and k3 indicate the wave vectors of the signal, idler, and pump beams,
respectively. When the phase mismatch, Ak = ks — k; — kj, is zero, maximum
efficiency of the parametric interaction is achieved.

With these two conditions satisfied, we can now discuss the wave equations
in the nonlinear media. The parametric interaction of these three pulses in a
nonlinear crystal is described by three coupled nonlinear differential equations of

the following form,

1 0? 47 O*

V x V xEj(r,t) + 5 22D;(r,t) = —c—2ﬁP§w‘(r,t) (3)

2
where j = 1, 2, and 3 are for the signal, idler, and pump frequencies, respectively,
and the nonlinear polarizations are given by PN(r,t) = @ : E}(r,t)Es(r,1),

PYl(r,t)= @ :Ej(r,t)Es(r,t), and PYE(r,t) = @ : E(r,t)E;(r, ).
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2.2 Spatial Effects

The spatial effects on the parametric efficiency has been thoroughly detailed through
a series of analysis and simulations [4, 5]. Therefore, only brief reformulations of
the coupled wave equations and the necessary spatial characteristic parameters are
presented.

First, to incorporate the spatial effects into equation (3), the complex electric

field for frequency w; is written as:
E;(r,t) = &;€;(z, t)i;(r) exp(ikjz — iw;t) (4)

where é; is the unit vector of the field polarization direction, £;(z,t) is the field
envelope of the pulse traveling in the z-direction, 1;(r) describes the spatial profile
of the pulse beam, and k; = k;-2. As for the spatial profile of the interacting beams,
a TEMg, Gaussian spatial mode is assumed. For the most efficient parametric
generation process, the pump beam should have a focused Gaussian profile and
the resulting signal and idler beams would also have a Gaussian profile. The TEMgo

Gaussian spatial profiles are written as

[ A, o

where f, is the z-coordinate of the Gaussian beam focus and is assumed to be the

same for all three interacting beams for efficient interaction, wjo and «; are the
beam waist and the spatial walk-off angle, respectively, of the beam at frequency
w;j, and & = 2(z — f,)/wk;j. The z-coordinate has its origin, z = 0, at the input
surface of the nonlinear crystal. The z-direction is chosen to be the direction of the
propagation of k3 for mathematical simplicity. As shown in Fig. 2, the angle 7 is

the angle between the propagation of the wave front, represented by k, and the 2z
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axis. ¢ is the birefringence angle, and « is the angle between the Poynting vector
and the z axis. Thus the angle a =4+ ¢ describes the walk-off of the beam from
the z axis caused by both double diffraction and noncollinear phase matching [5].

After the substitution of Egs. (4) and (5) in (3) and some mathematical manip-
ulations, the coupled traveling wave equations under the slowly varying amplitude

approximation are obtained

z27rw ,Akz

)el(z,t) = I (xersEi e

0 10 Dy &
Tkyc?

9z EEZ + z2wlcﬁ

z27rw ,Akz

Lsa(2)xess€1Ese

+—ati

0z w40t @aﬁ) blxt) = kyc?

(a 18 .Dy 9 (6)

z27rw
+——=+:

2 19 D3 82 — * —~1Akz
(5 Vg3 Ot 2w 8t2) 83(2 t) - ksc Fsa(z)Xeffglgze R

where v,; is the group velocity and D; = wjc(d?k;j/dw?) is the dimensionless dis-
persion coefficient at w;, xer = €3- (2)(w3 = w;+wy) : €16, is the effective nonlinear
susceptibility, Ak = k3 — k; — k; is the phase mismatch, and T',;(2) are the spatial

beam overlap factors. The dimensionless spatial beam overlap factors are given by

(o JII(O) Y5 (r)ps(r)dady w3 __ Ks(2)
5i(2) = cos? a; ffzz;‘(r)zl)j(r)dwdy - WJZ-0 c:::? o; ro(2) = rfj cos? a;’ (7

where r;; = Wio/Wap and 7,2 = Wy/W3p are the beam-waist ratios of the signal

and idler, respectively, to the pump, and

2hrh [y, =87
7'31 + 7'32 + 7'31"'32 2

(z - f8)2 1+ (Z - fs)z/lsblsc
P [ 2, 1+ (z- f.)2/5,

ks(z) =

+ i¢s(z)] . (8)
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Figure 2: Propagation of an arbitrary beam in an anisotropic medium. The direc-
tions of E, D(w), E x H, and k lie in the z2z-plane.
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The spatial characteristic lengths in Eq. (8) are defined by

L, W§0 7'31 + 7'32 + 7'31’"32 9)
2 rh(kyt = k3Y) (kT — k) + (W + R
! Wi Thl(og — a3)? 4+ 72 (as — a1)? + (o0 — @3)? (10)
o 2 kl_l(az - 03)2 + k;l(a;; - 01)2 - kgl(al - 02)2’
1/2
l, = Wso "31 + 7'32 + 7'31 7'32 / (11)

7'31 (0‘2 - 03)2 + 7"32(0‘3 - 01)2 + (011 - 012)2

and the phase ¢,(z) is given by

_ lsb"‘l.sc (2_fs)3 -1 Z"'fs
P) = B, TH = fs T T,

Each of these spatial characteristic lengths has very clear physical meaning: I

. (12)

is a length parameter characterizing the effect of spatial beam broadening due to
diffraction; I, is the aperture length due to spatial walk-off; and I,. is a character-
istic length of the combined effect of beam broadening and beam walk-off. Note

that ;5 and /,. can be either positive or negative, but Iy, is always positive.

2.3 Temporal Effects

In the previous theoretical analyses in Refs. [4] and [5], the time-dependent charac-
teristics of the parametric pulses are kept explicit until the final master differential
equation describing the OPO. This is done by keeping the time-derivative terms
containing vy; and D; in Eq. (6) in the operator form to arrive at a time-dependent
gain containing time-derivative operators [4]. The advantage of this approach is
that the temporal characteristics of the pulses can be studied in detail, as the sim-

ulation results in Ref. [4] show. The disadvantage is that no simple evaluation of
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the temporal effects is possible without a full simulation of the master differential
equation, as mentioned in the preceding section. The objective here is to include
the temporal effects in the formulation of an effective gain coeflicient which can
be evaluated without solving the master differential equation. The strategy is to
remove the time-derivative terms in Eq. (6) by integrating them out before pro-
ceeding further in the calculation of the effective gain. By doing so, we trade our
ability of simulating the detailed temporal characteristics of the parametric pulse
for an ability to evaluate both the spatial and the temporal effects in combination
through an effective gain coefficient.

To integrate out the time-derivative terms in Eq. (6), we recognize that the
left-hand side of these equations has the form of a complex diffusion equation,
or Schrodinger-like equation. Its eigenfunction solutions are a series of Hermite-
Gaussian functions. Therefore, the pulse envelope £;(2,t) can be expanded in
terms of these Hermite-Gaussian eigenfunctions. Normally the field envelope of
the pump pulse has a temporal shape of either Gaussian or hyperbolic secant.
Since a hyperbolic secant function can be closely approximated with a fundamental
Gaussian, only the fundamental Gaussian term is needed for the expansion of the
pump pulse envelope in the first-order approximation. With such a pump pulse,
the signal and idler pulses all have single dominant temporal peaks which can also
be approximated by the fundamental Gaussian in the first-order approximation.
This can be seen from the temporal characteristics obtained through simulations
in Ref. [4] and can be understood from the fact that the parametric interaction
is a nonlinear process which favors energy conversion at the peak of high field

intensities.
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The fundamental Gaussian solutions for the temporal pulse characteristics have

the following form

1 [t — (2 = fi)]/vg;]?
hi(z,t) = Wexp{—2lnz AtZy(1 - in;) } ’ 1)

where Atjo is the full-width at half-maximum temporal pulsewidth for the pulse at
frequency w; and 7; = (41n2)D;z/w;cAt%,. The parameter f; is the 2-coordinate
of the location where the peaks of the pulses overlap. It depends on the synchro-
nization of the input pump and signal pulses and can be adjusted experimentally
with an external delay line or, in the case of a synchronously pumped OPO, by
fine-tuning the cavity length. It has a meaning analogous to the spatial overlap
of the beam waists defined by f, in Eq. (5). However, in the spatial case, the
parameters wjp’s are the beam waists measured right at the common focal loca-
tion at z = f,. In the temporal case, the pulsewidths that can serve as good
reference are the ones at the input surface of the nonlinear crystal because a pulse
starts changing its pulsewidth once it enters the crystal and the change depends
on many case-specific parameters. For this reason, we take At;o’s to be the input
pulsewidths at z = 0 rather than those at z = f;. This explains why & in Eq. (5)
is a function of z — f, while ; in Eq. (13) is a function of z alone.

Therefore, the pulse envelope is written as
Ei(z,t) = Aj(z)hj(z,t), (14)

where the complex amplitude 4;(z) retains the dimension of the electric field, as
do &; and E;. Substitution of Eqs. (13) and (14) in (6) yields

0Ai(z) 27w

2 .
5 = he DX () As()e e,
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0A 2T w3 .
D) e e en () Aaf)e (15

0As3(2) 12Twa
0z T ke

T3 (2)XerA1(2) Az(2)e ™45,

where the total overlap factors I'j(z)’s are dimensionless and contain both spatial
and temporal effects

Tj(2) = T4j(2)45(2)- (16)
The temporal pulse overlap factors are given by

I Ri(z,t)R3(z,t)ha(z, t)dt _ At?,o,C )
12, B3 (2, t)hy(z, t)dt Atjo

Ty(z) = = fjj(tji) (17)

where 1y = Atyo/Atso and rip = Atyo/Atsg are the pulsewidth ratios of the signal

and the idler, respectively, to the pump, and

2/2r 14 22\ (z— fo)2 14 22/ lyls )
“O=agean UTE) T a eam )
()

The temporal characteristic lengths in Eq. (18) are defined by

l At rh T+ AT (19)
® T 4In2r% (D, — Ds) + r%(Dy — Ds) + (D1 + Dy)’ |
L Aty rh(Ny— N4 rh(N = No)? + (N — o)’ (20)
tc

4102 Dy(Ny — N3)? + Do(Ns — Ny)? — Ds(Ny — Nz)?’

L= cAtzg rh+rhtThTh A (21)
T @22 [rh(N: — Na)? +rh(Ns — N2 + (N — No)?]
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where D; = D; jwjc = d*k;/dw? and the group index N; = c/vy; = nj—w;(dn;/dw;).

The phase ¢:(2) is given by

_ltb =l Z(Z - ft)2 _ ltan'l =z
ltbltcltzw ]. + Zz/ltzb 2 ltb.

¢:(2) = (22)

Each of the temporal characteristic lengths also has clear physical meaning in
analogy to its spatial counterpart: I is the length characterizing the effect of
temporal pulse broadening due to group-velocity dispersion; l;,, is the temporal
aperture length due to temporal pulse walk-off; and /;. is a characteristic length of
the combined effect of pulse broadening and pulse walk-off. Similar to their spatial
counterparts, Iy and ;. can also be positive or negative while l;,, is always positive.

In Eq. (15), the temporal characteristics of the pulses have been integrated and
their effects accounted for by the T';; factors. Therefore, the parameter to be used
in evaluating the gain in the following is the pulse energy rather than intensity or
power used in Refs. [4] and [5], respectively. The energy of pulse j at the location

z is given by

cos? a;
— AtjolA;(2)?,  (23)

dw;

o0 T 1/2 c2k,w2
uste) = [ Bt = (55) - =

where w;(z) = wjo(1 + £7)'/? and At;(z) = Atjo(1 + n?)Y/2. The total energy of

the three interacting pulses is conserved:

U = Uy(2) + Us(z) + Us(2). (24)
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2.4 Effective Gain

Following a procedure similar to that taken in Ref. [5], Eq. (15) can be solved by

first defining u; and ¢; with

4In2 1 4wl 12 igj(z
40 = (22) " () @)

2 L xar2 2 ov: At
s c2kjw, cos? a;Atjo

and then making the following change of variable

¢ = r(4l2 ‘/“( U )1/2
- C3 T k1k2k3

4
) WiWaws Xeff /0 |ks(2)ke(2)|dz.

1/2 1/2_1/2
wsoAtm/, r,lrsgrﬂ/ rt2/ COS (] COS (¥ COS Qr3

Then, Eq. (15) can be transformed to the following equations

du, .
71—6_ = —upuzsinb,
du, .
E = —ugu;siné,
dus .
-;12— = wuyugsiné,
and
@1— = L cos f
d¢ uy ’
@ = L% cos
d¢ Uy ’
@-3- = 82 050
d¢ u3 ’
where

0 = Akz + ¢4(2) + 6:(2) + #3(2) — d1(2) — $2(2),
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which satisfies

_a_l_q__ dos(2) = ddi(2) dz dln(uiuqus)
- | T |ttt

(30)

Exact analytical solutions in terms of elliptic functions can be obtained for u; and
#;. This has been discussed in Ref. [4]. For our purpose here, we consider the
most efficient case of exact phase matching with input U3(0) = Us, U1(0) = Uy,
but U3(0) = 0. This yields the following solution for the signal

u1(¢) = wu1(0)en [iug,(o)g,,':j;gg;]

1 1 1
~ w(0) (145800 + 5-ud(0) - 2d(020)) . ()
For a crystal length I, the single-pass effective field gain is

2us
3(.4)1

Genr = ulle) —n(® _ b3 + %b2u§ -

o b2U U (32)

where (. = ((l;). In Eq. (32), the first term, bl{3, is the small signal gain and the

third term represents gain saturation. The b coefficient is given by

a'l?
b= eff
where
43wl
! 1%2%3 2

= 1727 4

a kl k2k‘366 effs (3 )

1 8 1 rir2, (35)

wl: 7 w3, cos? a; cos? oz cos? az (12 + 12, + r2r)?’
1 (8)1/2 (21n2)Y/2 1T (36)
Aty \m Atsy  1h+rh +rhrd’

21



and

z—fs 2 -2 (z"fs)21 +(Z_fs)2/lsblsc
fon = '/ [1 i } P l— B, 1+(z=f)% ]

-1/4 2 2
z _{2 - fi)!l1+2z [lplse
(1 T ) o [ 7, 1+, ] o 6D

The effective field gain Geg is a dimensionless quantity which measures the
amplification of the field magnitude of the signal pulse through the parametric
process. It can be seen from Eq. (32) that the b coefficient is the key parameter
which determines the efficiency of the parametric interaction. It is thus called the
parametric efficiency coefficient. The quantity 1/b has the dimension of energy
and corresponds to the pump pulse energy required to have a small-signal gain of
100%. One can see from Eq. (33) that the b coefficient contains all the spatial
and temporal effects of parametric interaction because the effective interaction
length, l.g, is determined by the six characteristic lengths, three spatial and three
temporal. When the crystal length exceeds a particular characteristic length, the
corresponding effect responsible for that characteristic length becomes important
in limiting the efficiency of the parametric interaction, thus setting a limit for the
useful effective length. If more than one characteristic length is shorter than [,
the effective interaction length is limited by a combination of the effects behind
those characteristic lengths.

In a cw synchronously pumped OPQO with a total round-trip electric field loss
L in the cavity, G.q can be used to estimate the threshold pump pulse energy for

oscillation by setting the small signal gain equal to the loss to have

uthreshold — £

- (38)
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For pumping not too high above threshold, Geg = L when the OPO reaches its
steady state. This can be used to roughly estirﬁate the energy of the signal pulse

in the cavity,

' 2w11 bZ/{3 L
u"‘3w3b(1+ 6 "bu3>’ (39)

and the output signal-pulse energy,
U, = (1 - R)Us, (40)

where R, is the reflectivity of the output coupling mirror.

The results obtained here can also be applied to parametric amplification or
difference frequency generation of ultrashort pulses without a resonant cavity. For
parametric amplification, the single-pass amplification factor of the signal-pulse
energy is given by

_ “%(Cc) _ 2
A, = w3 (0) = (1+ Ger)*. (41)

For difference-frequency generation, the desired output is the idler pulse at w,. Its

energy at the output is given by

Us(l) = :—j[ul(lo — Us(0)] = :—’—j (2 + Georr)Us. (42)

2.5 Noncollinear Phase Matching

When considering OPO systems, there are two possible phase-matching geome-
tries used in an experimental condition: collinear and noncollinear phase-matching.
Out of these two possible geometries, the more often used configuration is collinear
phase-matching geometry for it is simpler. However, simplicity does not necessarily

mean efficiency because noncollinear phase matching may increase the parametric
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efficiency under certain experimental conditions. One way to increase the para-
metric efficiency under noncollinear phase-matching conditions is the reduction of
walk-off in anisotropic crystals. This reduction of walk-off will increase the value of
l,.; as a result, the value of l.g will also increase. Consequently, the value of b will
increase. To reduce walk-off, Wachman et al. [18] collinearly aligned the Poynt-
ing vectors of the pump and signal waves. Subsequent experiments [21, 22, 23]
followed using a similar approach and the increase in parametric efficiency was ob-
served. However, for many phase matching geometries in nonlinear crystals, when
the Poynting vectors of the pump and signal waves are collinear, the Poynting vec-
tor of the idler wave also walks off. To achieve maximum parametric interaction,
all three Poynting vectors should ideally be overlapping with one another.

Although some theoretical treatment of noncollinear phase matching and the
parametric efficiency has been performed [45, 46, 47], none compares the effects
of various experimental conditions, such as the crystal length, phase matching
angle, the beam waists, and the pulsewidths, on the parametric efficiency. Many
experiments have shown that noncollinear phase matching in parametric generation
increases the efficiency and reduces the operational threshold {48, 49, 50, 51, 52,
53]. For example, Gloster et al. [51] reports, for Type I phase matching in a
BBO OPO pumped by the third harmonic of a Q-switched Nd:YAG laser, the
optical conversion efficiency increased from 10.7% in the collinear case to 40% in
the noncollinear case. In this section, we briefly review the underlying theory of
noncollinear phase matching and propose a method for finding a set of conditions
for optimal parametric efficiency.

For electromagnetic waves traveling through an anisotropic medium, such as a
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nonlinear crystal, the waves have two types of polarizations: ordinary and extraor-
dinary. For a wave propagating along k in a uniaxial crystal with the optical axis

%, the directions of the polarization of the ordinary and extraordinary waves are
defined as

¢, =kx% and & =k x &, (43)
respectively. If the vector k is in a direction which is at an angle 0 with respect to

the axis 2 and an angle ¢ with respect to the axis &, then we have

A

k = Zsinfcos ¢ + gsinfsin ¢ + Z cos b, (44)
é, = Zsin ¢ — § cos ¢, (45)
é. = —3cosfcos¢p—1cosfsing + Zsiné. (46)

While the Poynting vector, represented by S;, of the ordinary wave is parallel
to the wave vector, k;, that of the extraordinary wave is not parallel to the wave
vector. Collinear phase-matching is achieved when three wave vectors, kj, k3, and
ks, are collinear. However, this collinearity of the wave vectors does not lead to the
collinearity of three Poynting vectors, S;, Sz, and S;. Insufficient overlapping of
the Poynting vectors, as a result, is assumed to lead to lower parametric efficiency.
On the contrary, in noncollinear phase-matching, k;’s are not aligned collinearly,
therefore one may be able to “align” the Poynting vectors close to each other
for better parametric interactions, thus producing higher parametric efficiency.
Regardless of the phase-matching geometry, the fundamental constraints for the
parametric process given in Egs. (1) and (2) must be satisfied at all times.

To further clarify and investigate this concept, we consider the parametric

interaction in a most widely used nonlinear crystal, KTP. To compare the effects
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of collinear and noncollinear phase matching, we choose a representative case of
Type II phase matching, 0 — e + o for w3 — wy + wo. In this configuration, the
pump and idler waves are polarized in the crystal y-direction and the signal wave
is polarized in the zz-plane. As mentioned before, the crystal axes are defined
as 2, ¥, and 2. Therefore, for the phase matching configuration considered in the
analysis, ¢ = 0° and x.g = x245inf. Since a counterpart system, o — o + e
interaction, follows the same type of analysis, we limit our discussions only to the
former case.

First, we consider the collinear phase matching case, which is schematically
shown in Fig. 3. Any angle shown in Fig. 3 is defined positive in the counterclock-
wise direction. 6; is defined as an angle from the crystal axis 2 to the respective
wave vector k;, where the subscripts 1, 2, and 3 indicate the signal, idler, and
pump, respectively. The definitions of ¢; and a; are those defined in section 2.2.
As we mentioned previously, Egs. (1) and (2) must always be satisfied. Rewriting
in terms of wavelengths and indices of refraction, A;’s and n;’s, respectively; they

have the following form:

NTh TR “n
and

s _m, M

')‘; by + N (48)

Since the pump and idler waves are ordinary, their indices of refraction are easily
calculated from the Sellmeier’s equation given in Ref. [5]. However, for the ex-
traordinary signal wave, the index of refraction is a function of the phase matching

angle 6., which is defined as the angle between the three collinear wave vectors
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Figure 3: Schematic diagram of the collinear phase matching in KTP.
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Figure 4: Schematic diagram of the noncollinear phase matching in KTP.
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and the optical axis 2. Now Eq. (48) becomes

Mo(A3) _ ne(fe; A1) + n,(Az)
A3 M A2

(49)

where the subscripts o and e represent ordinary and extraordinary, respectively, n,
is the index of refraction along the y crystal axis with corresponding wavelengths,

and n, is given by

1 1 1\
ne(0c, A1) = [;1—2— + cos? 6, (;17 - —)] . (50)

: ;o
Note that for collinear phase matching, §; = 6; = 03 = 6, where 6, is defined
as collinear phase matching angle. As shown in Fig. 3, the Poynting vectors, S3
and S,, for the pump and idler are collinear while the Poynting vector, S;, for the
signal wave has deviated toward 2z due to the birefringence of the nonlinear crystal.
Again, invoking the definition of aj: in section 2.2, we find that vy =y, =13 =0

and @2 = 3 = 0. Since the signal wave is extraordinary, ¢; # 0 and ¢, is given

by

-1 733251
01 = 0. — tan ( =~ tan 06) . (51)

L5

This means that, for the collinear phase matching case, the angles of walk-off are:
a1 = ¢; and oy = a3 = 0. The walk-off angle o4 is plotted in Fig. 5 (b). Note
that as the phase-matching angle nears 90°, the noncritical phase matching angle,
the walk off angle approaches zero.

Now we consider the noncollinear phase matching case. As shown in Fig. 4, 7
and 4, are no longer zero and have positive or negative values depending on their
directions. KTP is a biaxial crystal with mm2 symmetry. Since the values of n,
and n, are very close to each other, we will assume KTP an uniaxial crystal for

our analysis. Since we are considering a positive “uniaxial” KTP, we choose ; to
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Figure 5: Phase matching angle and the angle of walkoff for A3 = 1.053 pm.

have positive values. With the phase matching directions and conditions we have
described above, S; will move closer to S; and S; for positive v, but will move
away for negative ;. Therefore, for nonzero values of 4, and 7;, Eq. (49) has to
be modified to include geometrical constraints producing this set of two equations

to be satisfied

no(s) = ne(f1, 1) cosm + Ro(X2) COS Y2 (52)
/\3 /\1 A2
e(01, . o(A2) .
n—(/\l/\—l)sm'yl + z /(\ 2) siny = 0. : (53)
1 2

As we mentioned earlier, the effective gain, Geg, largely depends on the value of
l.&, whose value in turn largely depends on the six characteristic length parameters,
Lsb, Lscy Lsw, lib, ltc, and Iy, Out of these length parameters, when the spatial effects
are dominant over the temporal ones, l;, becomes the most important parameter
in determining the value of lg. As we can see in Eq. (11), the value of [, is mostly
affected by the relative deviation of any pair of a;’s. Therefore, to maximize Iy,
we only need to find a set of a;’s, which satisfy Eqs. (1) and (2), that produce the
maximum l,,. The maximization of I,,, leads to the maximization of l.g; therefore,

the maximum value of 1, is directly related to the maximization of the parametric
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efficiency. The details of a numerical simulation are fully discussed in section 3.0.
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3.0 Numerical Simulation

3.1 Collinear Phase Matching

In this section, we present numerical results to demonstrate the concepts derived
from the preceding theoretical analysis and to get a quantitative sense of the key
parameters. For this purpose, we choose a few practically meaningful values for
each experimental parameter to show how the spatial and temporal effects vary
and what influence they have on the effective gain of the parametric interaction.
We consider the parametric interaction in a KTP crystal with pump pulse
at three different pump wavelengths: the fundamental of the Nd:YLF laser at
1.053 pm, its second harmonic at 527 nm, and the spectral center of the Ti:sapphire
laser at 780 nm. The o — o + e phase matching for w3 — w; + w, with pump
and signal polarized in the crystal y-direction and idler polarized in the zz-plane is
considered. Alternatively, if the roles of signal and idler are exchanged, the same
condition applies to 0 — e + o phase matching with pump and idler polarized
in the y-direction and signal polarized in the zz-plane. For both cases, we have
¢ = 0° and Xeg = X245in 0. Therefore, the responsible nonlinear coefficient is x24,
or dys. Recent measurement of dyy yielded values of 3.3 pm/V [54], 3.64 pm/V
[55], and 4.1 pm/V £10% [16] at 1.064 pm wavelength, which are all lower than
the previously reported value of 7.6 pm/V [5]. In the following calculations, we
take dys = 3.64 pm/V for A3 = 1.053 pm and use the Miller’s rule to account
for its dispersion at other wavelengths. For the principal indices of refraction,
we use the Sellmeier equation with the coefficients given in Ref. [5]. They are

used to calculate the group indices and the group-velocity dispersion coefficients,
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as well as the phase-matching angles, in each case. In Appendix A, the values of
these characteristic parameters are plotted with respect to the wavelength for easy
look-up reference. With the three different pump wavelengths and with the signal
and idler wavelengths extending to the long-wavelength end of the transmission
window of KTP, we will be considering a combined spectral range from 527 nm to
4.5 pm.

For calculations that require specification of the pulse beam parameters, two
representative pump beam waist sizes of wzp = 100 and 20 gm and three repre-
sentative input pump pulsewidths of Atzo = 5 ps, 500 fs, and 50 fs are considered
for each pump wavelength. When the specification of crystal length is necessary,
such as in the calculation of the parametric efficiency coefficient, we consider three
representative crystal lengths of I, = 1, 5, and 10 mm. Since the spatial effects
have been discussed in great detail in Ref. [5], the consideration here on the spa-
tial effects focuses mainly on their contrast to and interplay with the temporal
effects. To reduce the number of free parameters, we consider only the case when
rs1 = Ts2 = 1 and 1y = ryp = 1. This allows us to keep the amount of data at a
manageable level without missing the key features of the various characteristics to

be discussed.

3.1.1 Beam and Pulse Broadening

Both spatial and temporal effects contribute to parametric interaction among ul-
trashort pulses through broadening and walk-off. The actual impact on the para-
metric gain is determined by the combination of these effects characterized by the

six characteristic lengths. To gain a very intuitive appreciation of the importance
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of spatial and temporal broadening effects and to serve for later reference, we show
in Fig. 6(a) and (b) the percentage of spatial and temporal broadening, respec-
tively, as a function of wavelength for focused pulse beams of different beam waist
sizes and different pulsewidths, after they travel 5 mm through a KTP crystal
with their fields polarized along one of the three principal axes of KTP. A beam
at 4 pm wavelength focused to 20 pm at the beam waist diverges very quickly and
broadens about 10 times over 5 mm in KTP while the broadening of a less-focused
beam with a beam waist of 100 gm is broadened by less than 9% over the same
distance. In contrast, a nonchirped pulse of 500 fs fullfwidth at half-maximum
pulsewidth suffers less than 0.5% broadening over 5 mm in KTP while substantial
broadening is observed at both ends of the spectrum for a nonchirped pulse of 50 fs

pulsewidth.

3.1.2 Spatial and Temporal Characteristic Lengths

The spatial effects and the temporal effects are each characterized by three char-
acteristic lengths. The physical meaning of each of these characteristic lengths has
been mentioned in section 2.0. In this section, we show their numerical values and
discuss their physical implications.

We see from Eqs. (9)-(11) that the spatial characteristic lengths can be nor-
malized with respect to the pump beam waist size. In Fig. 7 (a), (b), and (c),
we show the values of ly5/W2y, lsc/ W3y, and Iy, /W30, respectively, as a function of
signal wavelength for the three different pump wavelengths considered. Similarly,

the temporal characteristic lengths can be normalized with respect to the pump

pulsewidth, as can be seen from Eqgs. (19)-(21). The values of ly/Atd;, I/ Ats,
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Figure 6: Percentage of (a) spatial beam broadening for focused beams of 20 pm
and 100 pum initial beam waists and (b) temporal pulse broadening for nonchirped
pulses of 50 fs and 500 fs initial pulsewidths as a function of wavelength after
traveling 5 mm through a KTP crystal with field polarization along one of the
principal axes.
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and I,/ Atz are shown in Fig. 8 (a), (b), and (c), respectively, as a function of
signal wavelength for the three different pump wavelengths. In Fig. 8 (b), the
data for pump wavelength at 527 nm is not shown since in this case li./At}; has
either a negative value smaller than —21 m/ps? in some parts of the spectrum or,
in other parts of the spectrum, a positive value larger than 48 m/ps®. Therefore,
l,. for the 527 nm pump wavelength can be considered infinity for any practical
purpose. In each of these plots, the solid curves show the data for 0 — o+ € phase
matching with the signal being the o-wave while the dashed curves show those for
0 — e + o phase matching with the signal being the e-wave. Note that each pair
of corresponding 0 — o+ e and 0 — € + o curves crosses at the degeneracy point,
as expected.

For a given crystal length, the characteristic lengths determine the effective
interaction length through Eq. (37), which in turn determines the parametric
efficiency coefficient, b, through Eq. (33). To see the significance of each character-
istic length, we examine the contributions of the spatial and the temporal effects
to the effective length l.g in Eq. (37). For the convenience of discussion, we recast

Eq. (37) in the following form

le le '
Qpi/a@ﬂzzfcaﬂmkﬂz (54)
0 0
where the integrand o(z) = 0,(2)0:(z) contains the contribution of the spatial

effects:

o ™ e [_ (= £ 1+ (2= fs)z/lsblsc] 55)

s = |14+
7:(2) [ 2, E, 1+ /)R,

and the contribution of the temporal effects:

22\ (2= fi)2 1+ 22/lnlec
or=(ivg) e[ @
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Figure 7: Spatial characteristic lengths normalized to pump beam waist as a func-
tion of signal wavelength for three different pump wavelengths at 1.053 ym, 780 nm,
527 nm using collinear phase matching geometry. The solid curves are for 0 — o+e
phase matching and the dashed curves are for o — e + o.
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From the functional form of o,(2) and 0¢(2), it can be seen that the significance
of each characteristic length increases as its value decreases. However, the signif-
icance of each characteristic length differs from one another. The function 0s(2)
depends most strongly on Iy, while 0;(z) depends most strongly on /s,,. The spatial
characteristic length I,;, shows its effect only when its absolute value is comparable
to or smaller than that of l,,. Similarly, the effect of the temporal characteristic
length Iy is observable only when the value of |l3| is comparable to or smaller than
that of l,. The significance of I, and ;. is subtler and less direct. It is determined
by the relationship between their values and those of l,; and Iy, respectively. This
can be seen from Egs. (55) and (56) and will be further discussed later. Since g
and I, scale with w2, but l,, is linearly proportional to w3, the relative signif-
icance of I, and [, increases as the beam waist size decreases with tight focus.
This can be seen from the fact that I, > 17 mm, I, > 30 mm, and I, > 2 mm
for wap = 100 pgm, but I, > 0.68 mm, l,, > 1.2 mm and l,, > 0.4 mm for wzp =
20 pum, from reading the curves in Fig. 7. Similarly, the relative importance of I
and [, increases as the pulsewidth decreases. From reading the curves in Fig. 8,
we find that |l;] > 100 mm, |l;| > 130 mm, and I, > 1.3 mm for Atz = 500 fs,
but |l;| > 1 mm, |l;| > 1.3 mm, and I, > 0.13 mm for Atz = 50 fs. For pump
wavelength at 780 nm, we can even find the situation that |/s| < I in some parts
of the spectrum when Atz = 50 fs. However, only when the beam focus becomes
very tight or the pulse becomes very short do the broadening effects set in to
complicate the matter. Even then, the walk-off effects still remain important.

Therefore, the relative importance between the spatial and temporal effects
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is mainly determined by the relationship between the values of the spatial and
temporal walk-off lengths. The spatial effects dominate if I, < l;, while the
temporal effects dominate if I, < lyy,. If l,, and [, have comparable values, the
spatial and temporal effects are compounded. Because l,,, and l;,, depend linearly
on wag and Atsg, respectively, the relationship between them can be translated
into the relationship between wap and Atsp.

From the data in Figs. 7 (c) and 8 (c), one can deduce the value of Atsg/w3g
for the condition l,,, = l;, when the spatial and temporal effects are equally im-
portant. This value is plotted in Fig. 9 as a function of signal wavelength for the
three different pump wavelengths under consideration. This figure can be used
directly to determine whether the spatial or the temporal effects dominate in a
given experimental situation. If the value of Atsg/w3g lies above a particular curve
in Fig. 9, then [, < l;,, and the spatial effects dominate for the combination of ex-
perimental parameters corresponding to that curve. If it lies below the curve, then
liw < lsy, and the temporal effects dominate. For example, for pump wavelength
at 1.053 pm, if Atzo = 500 fs and wzp = 100 um, the temporal effects dominate
for signal wavelength in the short range of A; < 1.85 um in the case of 0 - 0+ ¢
phase matching, but the spatial effects dominate for A; < 2.45 pm in the case of
o — e+ o. In contrast, over the entire spectral range of interest for wzg = 100 pm,
the temporal effects dominate if Atz = 50 fs, but the spatial effects dominate if

Atszg = 5 ps.
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Figure 8: Temporal characteristic lengths normalized to pump pulsewidth waist as
a function of signal wavelength for three different pump wavelengths at 1.053 pm,
780 nm, 527 nm. The data of l;./ At%, for 527 nm pump wavelength have very large
absolute values outside of the scale for (b) and are not shown. The solid curves
are for 0 — o + e phase matching and the dashed curves are for o — e + o.
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Figure 9: Ratio of pump pulsewidth to pump beam waist when spatial and tempo-
ral walk-off lengths are equal as a function of signal wavelength for three different
pump wavelengths at 1.053 gm, 780 nm, 527 nm using collinear phase matching
geometry. The solid curves are for 0 — o+ e phase matching and the dashed curves
are for o —» e+ o.

3.1.3 Spatial and Temporal Overlap

It has been discussed in Ref. [5] that maximum parametric gain is obtained when
the three interacting beams are focused in a manner such that their beam waists
overlap at the same location and that this common focal point is located at the
center of the nonlinear crystal. Therefore, in Eq. (2.5) only one common parameter
fs is used for all three beams. It is also clear that for maximum parametric gain,
the three interacting pulses should be synchronized. This has led us to use again
only one common parameter f; in Eq. (2.13) for all three pulses. The question
here is the relation between f; and f, for the most efficient parametric interaction
among the ultrashort pulses.

This question can be answered by examining the relationship between o,(2)
and 04(z), defined in Eqgs. (55) and (56), respectively. Note that o,(2) is indepen-
dent of the temporal characteristics of the pulses and its shape and peak location

are completely determined by the parameters wao and f,. In contrast, o:(z) is
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independent of the spatial characteristics of the beams and its shape and peak
location are completely determined by the parameters Atso and f:.

Maximum parametric efficiency is obtained when log is maximized. This occurs
when the peaks of o,(z) and 0,(2) coincide at the center of the crystal so that the
area under o(z) is maximized. It can be shown that the peak of o0,s(2) appears
at z = f,, which is the location of the common focal point of the three beams.
However, for all cases of interest here, the peak of o;(2) appears at approximately
z = fy(1 + 12,/41%)"!, which is ahead of the location z = f; where the temporal
peaks of the three pulses overlap. This is caused by the effect of pulse broadening

in the crystal. Therefore, we should choose

2 2
ltw ltw

le
fo=1/2 and fimf, (1 + ;@) =3 (1 + 41%) (57)

for maximum parametric efficiency. These optimal values of f, and f; are used for
all the following calculations except otherwise noted.

The concept discussed here is demonstrated in Fig. 10 with an example of As
= 1.053 pm and A; = 3 pm in the case of 0 — 0+ e phase matching for l; =
5 mm and different values of Atzo and wag. Shown in Fig. 10(a) is the situation
when the peaks of o,(z) and 04(2) coincide at the center of the crystal. For a given
combination of Atsg and wso, the temporal effects dominate and set the limit for
the parametric efficiency if 03(2) has a narrower distribution than o,(z). The same
can be said for the spatial effects if o,(z) is narrower than oy(z). For the case
of Atsy = 500 fs shown in this particular example, the spatial effects dominate
for both wap = 100 and 20 pm. For Atz = 50 fs, the temporal effects dominate
when wzo = 100 pm but the spatial effects dominate when wzo = 20 pm. This can

be verified from reading the corresponding o — o + e curve for 1.053 pm pump
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Figure 10: Distributions of the spatial contribution, o, (dotted curves), the tem-
poral contribution, o; (dashed curves), and the total integrand, o (solid curves),
of the integral for the effective interaction lengths as a function of distance in a
5-mm KTP crystal for pump at 1.053 gm and signal at 3 ym wavelength with
o — 0+ e phase matching. Different combinations of pump beam waists of 20 ym
and 100 pm with pump pulsewidths of 50 fs and 500 fs are shown. In (a), both
beam overlap and pulse synchronization coincide at the center of the crystal. In

(b) and (c), beam overlap occurs at the center but pulses are synchronized at the
surface of the crystal.
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wavelength in Fig. 9. Also seen in Fig. 10(a) is the fact that the peak of o(z) for
Atso = 50 fs is reduced to a value somewhat smaller than 0.9. This is due to the
effect of temporal pulse broadening. In this case, Iy, = —3 mm while I, = 0.75 mm.
Even though the value of |ly| is still larger than that of Iy, this effect is already
observable after the pulses travel a distance of 2.5 mm to the center of the crystal.

Figures 10(b) and (c) demonstrate what happens when the beams are focused
at a common focal point located at the center of the crystal but the pulses are
temporally synchronized at the location of the input surface of the crystal. In
these examples, f, = I./2 = 2.5 mm and f; = 0. As can be seen, the area under
o(z) is reduced because the peaks of 7,(z) and o,(z) are no longer located at the
same location. This results in a reduced value for lgg and a correspondingly re-
duced parametric efficiency. This reduction becomes more severe as the pulsewidth
becomes shorter, as can be seen from comparing the ¢(z) curve for the 50 fs pulse
to that for the 500 fs pulse in Fig. 10(b). It also becomes more severe as the beam
waist size becomes smaller, as can be seen from comparing Fig. 10(c) to Fig. 10(b)
for the difference between wag = 20 pum and wao = 100 pm. Note that the peak
of o4(z) for Aty = 50 fs shown in Figs. 10(b) and (c) is not reduced because the

pulses are not broadened when they overlap at the input surface of the crystal.

3.1.4 Effective Interaction Length and Optimal Crystal Length

The effective interaction length gives a measure of the useful length of a nonlinear
crystal in a parametric process involving ultrashort pulses. As can be seen from Eq.
(2.37), it is always less than the physical length, I, of the crystal and approaches

I, only when the crystal is shorter than all spatial and temporal characteristic
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lengths. When [, is sufficiently large, the effective interaction length is completely
determined by the six spatial and temporal characteristic lengths.

We first consider the situation when |lg), |lss] > I and |, |lic] > I so that
both the spatial beam broadening and temporal pulse broadening are negligible.

In this case, the effective interaction length can be approximated by

leg ~ /0 - exp [—- _(_f_ﬁ] exp [—w] dz

lou Lt
te (z — 1/2)?
o [fon] o
= +/mlerf (%) , (58)

where the optimal values of f; = f, = [./2 as given by Eq. (57) are used and
by = (I3 + )72 (59)

is the net walk-off length with the compounded spatial and temporal walk-off
effects. We see from Eq. (58) that when the broadening effects are negligible, l.g
increases with increasing crystal length and has a maximum value of /7l,. We
also know from the behavior of the error function (erf) that this increase becomes
minimal as /. is increased beyond a few times l,,. Therefore, there exists an optimal
length, I, beyond which very little benefit is gained by further increasing the
crystal length. A good choice is I, = 3l,, which yields an l.g at 96.6% of its
maximum value of /7l,, and a parametric efficiency coefficient, b, at 93.3% of its
maximum value. To summarize, with no spatial and temporal broadening, a single
compounded walk-off length, [, determines the maximum value for l.g and the

optimal crystal length:

leg = 0.966/7l, ~ 1.71, = 0.571l, for I =l = 3l,. (60)
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In our numerical examples with KTP, this result applies to the cases of Atz = 5 ps
and 500 fs when w3 = 100 pm.

We next consider the more complicated situation when spatial and/or temporal
broadening effects are important. In this case, the values of |ls| and |l| are
comparable to or less than those of I, and l;,,, respectively. However, the situation
further depends on the values of I, and ;..

The effect of spatial beam broadening is simple because experimentally one
is always able to overlap the three interacting beams at their beam waists. This
allows us to consider only the most efficient case of locating all three beam waists
at f, = I./2, resulting in a o,(z) of the form given in Eq. (55). It can be seen from
this form that the peak value of 0,(z) at z = f, is always unity, irrespective of the
values of I, and l,.. Therefore, spatial beam broadening reduces the magnitude
of 0,(z) only at locations away from z = f,. This can lead to a reduction of the
value of the l.g when I, < li, and when significant reduction of the magnitude of
04(z) occurs within the spatial beam walk-off distance. However, this is effective
only when [,. & [ and both have absolute values comparable to or less than /,,.
In case |l,c| > |ls|, the reduction in the magnitude of os(z) away from z = f;
is almost exactly compensated by the increase in the width of the distribution of
0,(2), resulting in a negligible effect on the value of leg.

The effect of temporal pulse broadening on the value of l.g is rather compli-
cated. This is due to the fact that we have assumed that the pulses have their
minimum pulsewidths at the input surface of the crystal but are synchronized to
temporally overlap at z = f; for the peak of o(2) to coincide with that of o,(z) for

maximum efficiency. This assumption is based on the realistic consideration that
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it is experimentally difficult, if not impossible, to tune the temporal widths and
the frequency chirping of the pulses to compensate for the effect of group-velocity
dispersion in order for each pulse to have its minimum pulsewidth at the center
of the crystal where the pulses overlap both spatially and temporally. As a result,
the form of o4(z) is not symmetric with respect to z = f;. This is different from
the case of 0,(2), as can be seen from Egs. (55) and (56). This difference is not
important when the broadening effects are negligible, but becomes significant when
pulse broadening is substantial. Temporal pulse broadening reduces the magnitude
of 04(z), including its peak value. In addition, it also broadens the distribution
of a4(2). This can be seen from Eq. (56) that at the peak location, z = f;, the
distribution of 0(2) can be approximately characterized by an effective temporal

walk-off distance

1 + ftz/libltc
where f; is that given in Eq. (57). This is physical and reflects the fact that

2/12 \1/2
l:w = ltw (M) ’ (61)

the pulses have broadened from their initial widths when they finally overlap tem-
porally at z = f;. The broadening in the distribution of 0:(z) is particularly
significant when |l;c| > |l;5|. Sometimes, it can overcompensate for the peak re-
duction as f; increases. This can result in an unusual, but physical, phenomenon
of increasing lsg due to pulse broadening as the crystal length increases. This
increase eventually stops when the increase in [}, with increasing [. saturates or
when the spatial walk-off effects starts to set the limit, whichever happens first.
The effect of temporal pulse broadening on o(2), thus that on l.g, under dif-
ferent conditions discussed above is illustrated in Fig. 11. Shown in this figure are

the distributions of o(z2) for three different crystal lengths at three different pump
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Figure 11: Distributions of the integrand, o, of the integral for the effective inter-
action length as a function of distance for three different crystal lengths, I. = 1,
5, and 10 mm, and three different pump wavelengths at 1.053 pm (dotted curves),
780 nm (dashed curves), and 527 nm (solid curves), but the same signal wavelength
at 4 pm with o — o + e phase matching.

wavelengths of 1.053 pm, 780 nm, and 527 nm, but at the same signal wavelength
of 4 pm. The pump beam waist is wzg = 100 gm and the pump pulsewidth is
Atzo = 50 fs. Therefore, o(2) = 04(z) and the illustration clearly demonstrates
the effect of temporal broadening on the value of l.g. Under the given conditions,
we have [, = 0.6, 1.76, and 0.15 mm, I, = —1.37, —1.38, and —1.35 mm, and
l;, = —2.6, —2.2, and 466 mm, for A3 = 1.053 pm, 780 nm, and 527 nm, respec-
tively. Because the value of Iy is about the same for all three pump wavelengths,
the reduction in the peak value of o(z) due to pulse broadening is about the same
for all of them at a particular crystal length. Howevei‘, for A3 = 1.053 gm and
780 nm, l;. and [l are of the same order of magnitude. Therefore, there is little
broadening in the distribution of o(z) and a decrease in leg measured by the area
under o(z) can be seen as I, increases from 5 to 10 mm for these two pump wave-
lengths. In contrast, since |l;.] > |lu| for A3 = 527 nm, the distribution of o(z)

broadens faster than the decrease in its peak, resulting in an increased area under
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Table 1: Variation of temporal characteristic lengths with pump wavelength for
50 fs pump pulsewidth and 4 pm signal wavelength.

A3 ey lte ltw ho(le=1mm) I} (lc=5mm) I (lc =10 mm)
1.053um -1.37mm -26mm 0.6 mm 0.62 mm 0.75 mm 0.80 mm
780 nm -1.38mm ~22mm 1.76 mm 1.8 mm 2.08 mm 2.18 mm
527 nm -135mm 466mm 0.15mm 0.163 mm 0.33 mm 0.61 mm

o(z) and a corresponding increase in leg as I increases from 1 to 5 to 10 mm. In
this particular example, Eq. (61) yields I}, = 0.163, 0.33, and 0.61 mm for I, =1,
5, and 10 mm, respectively. Using the dispersion data of KTP and starting with
Atzg = Atyo = Aty = 50 fs, the broadened pulsewidths of the pump, signal, and
idler at the location z = f; & I./2 can be calculated for each value of I.. These
data can be used to calculate the real temporal walk-off distance of these broad-
ened pulses at the location of their temporal overlap using Eq. (21). The results
are [}, = 0.164, 0.36, and 0.65 mm for I, = 1, 5, and 10 mm, respectively, in close
agreement with the values obtained above using Eq. (61) and summarized in Table
3.1. The pulses have broadened substantially indeed. For I, = 5 mm, At; = 138 fs,
Aty = 70 fs, and At; = 77 fs at 2 = [,/2 = 2.5 mm. For [, = 10 mm, At = 262 fs,
Aty =109 fs, and At; =128 fs at z =1,/2 = 5 mm.

We see from the above demonstration that in the presence of temporal pulse
broadening the maximum value of l.g can appear with a very large crystal length.
In this situation, it is clear that the optimal crystal length is not simply the one
that gives the highest value for l.g unless the substantial broadening in the output

pulsewidths associated with the use of a long crystal is of no concern, which then
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defeats the purpose of using the ultrashort pump pulses in the first place. There-
fore, the optimal crystal length is dictated by the amount of pulse broadening

allowed. This depends on each specific situation and is hard to generalize.

3.1.5 Parametric Efficiency Coefficient

The effective field gain Geg defined in Eq. (32) is the parameter which ultimately
determines the performance of a parametric device generating or amplifying ul-
trashort optical pulses. This parameter depends on the energy of the pump pulse
and, when gain saturation sets in at a given pumping level, also the energy of
the signal pulse. A good parameter which measures the efficiency of a parametric
device without referring to the specifics of the pump and signal energy levels is the
parametric efficiency coefficient, b, given by Eq. (33). When the value of this co-
efficient is known for a particular experimental system, the value of Gg at various
pumping levels can be easily calculated using Eq. (32).

For a given crystal length and given pump pulsewidth and beam waist size, the
value of lg is calculated using Eq. (37). It is then used to obtain the parametric
efficiency coefficient using Eq. (33). The results are shown as a function of signal
wavelength in Figs. 12, 13, and 14 for pump beam waist wao = 100 pm and pump
pulsewidths Atz = 5 ps, 500 fs, and 50 fs, respectively, and Figs. 15, 16, and 17
for wao = 20 pm and the same three corresponding pump pulsewidths. The data
for pump wavelengths at 1.053 pm, 780 nm, and 527 nm are shown in each figure
for direct comparison. Shown in each plot are the data for different crystal lengths
I[,=1,5, and 10 mm. A large value of b represents an efficient parametric device.

The general features of each curve in these figures reflect the characteristics of
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the dominating characteristic lengths. This is most obvious for [, = 10 mm but
becomes less significant for shorter crystal lengths. When [, is large, the parametric
efficiency coefficient is subject to the same limitations imposed by the spatial and
temporal effects as those discussed above for the maximum value of l.g because lg
approaches its maximum value in this case. However, when [ is relatively small,
l.g may be limited more by the physical length of the crystal than by the limiting
characteristic lengths. The latter situation appears most when both wsp and Atzg
are large while [, is small, as in the cases of [ = 1 mm for w3y = 100 gm and
Atzg = 5 ps and 500 fs shown in Figs. 12 and 13.

If temporal pulse broadening is not important, an increase in crystal length
towards the value of I, defined in Eq. (60) definitely improves the parametric ef-
ficiency. This improvement continues but gradually slows down when I, approaches
lopt- Beyond this, the parametric efficiency saturates. This is true even when the
effect of spatial beam broadening is present although in this case the optimal crys-
tal length is some what longer than that given by Eq. (60), as is discussed earlier.
This phenomenon can be seen from comparing the data for [, = 5 mm and those
for I, = 10 mm in the cases of Atz = 5 ps and 500 fs shown in Figs. 12 and 13,
respectively, for wzp = 100 ym and in Figs. 15 and 16 for w3 = 20 pm. If the tem-
poral broadening effect is important, as is the case with Atz = 50 fs, increasing the
crystal length can result in either an increase or decrease of efficiency depending
on the initial crystal length and the relative values of the temporal characteristic
lengths. This can be understood from the dependence of leg on . discﬁssed earlier.

Therefore, the characteristics seen in Fig. 14 and 17 can be understood in light of

the phenomena illustrated in Fig. 11.
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Figure 12: Parametric efficiency coefficient in KTP as a function of signal wave-
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Figure 13: Parametric efficiency coeflicient in KTP as a function of signal wave-
length in the case of w3p = 100 gm and Aty = 500 fs for three different pump
- wavelengths at (a) 1.053 gm, (b) 780 nm, and (c) 527 nm using collinear phase
matching geometry. The solid curves are for o — o0 + e phase matching and the
dashed curves are for 0 — e + o.
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There are general trends for the dependence of the parametric efficiency on the
pump parameters, such as pump wavelength, pump pulsewidth, and pump beam
waist. However, there are exceptions for the dependence on each parameter. These
exceptions result from the competition of different spatial and temporal effects and
can be explained by comparing the relative importance of the competing effects.

As a general trend, the parametric efficiency increases as the pump wavelength
becomes shorter when other parameters are kept the same. This is mainly due
to the fact that the net frequency dependence of a’ defined in Eq. (34) is ap-
proximately a’ o wiws o 1/A;A;. As the pump wavelength A3 becomes shorter,
the idler wavelength A, corresponding to a particular signal wavelength A; also
becomes shorter. This effectively increases the value of a’, thus increasing that of
the parametric efficiency coefficient if other factors remain unchanged. However,
other factors do change adversely in certain cases. This is seen in the comparison
between Figs. 13(b) and (c) for Atzy = 500 fs and in that between Figs. 14(b)
and (c) for Atz = 50 fs, where the value of the parametric efficiency coefficient
drops as the pump wavelength decreases from 780 nm to 527 nm. The reason for
this anomaly is that ly, for A3 = 527 nm is substantially smaller than that for
Az = 780 nm, as can be seen from Fig. 8(c). Therefore, when the pulsewidth is
reduced to a level at which the temporal walk-off effect becomes dominant, the
reduction in the effective interaction length for A3 = 527 nm more than offsets the
gain in @' with respect to A3 = 780 nm, resulting in a reduced efficiency.

In general, the parametric efficiency also increases as the pump pulsewidth or
the pump beam waist is reduced. This is intuitively expected from Eq. (33).

However, l.g also depends on w3 and Atze through the dependence of the spatial
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Figure 15: Parametric efficiency coefficient in KTP as a function of signal wave-
length in the case of wgo = 20 pm and Atz = 5 ps for three different pump
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dashed curves are for o — € + o.
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Figure 16: Parametric efficiency coefficient in KTP as a function of signal wave-

length in the case of w3y = 20 pum and Atz = 500 fs for three different pump
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Figure 17: Parametric efficiency coefficient in KTP as a function of signal wave-
length in the case of wzo = 20 pm and Atz = 50 fs for three different pump
wavelengths at (a) 1.053 pm, (b) 780 nm, and (c) 527 nm using collinear phase
matching geometry. The solid curves are for o — o + e phase matching and the
dashed curves are for 0 — e + o.
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and temporal characteristic lengths on these two parameters. Therefore, only when
lg is not strongly limited by the characteristic lengths can one expect this general
trend to be true. This clearly favors the situation of a short crystal because l.g
becomes more limited by the physical length I, and less limited by the characteristic
lengths. For the dependence of b on Ats, we can expect that deviation from
the general trend of increasing b with decreasing Atso appears more often as the
pulsewidth becomes shorter and the crystal length becomes longer. This can be
seen by comparing Figs. 13 and 14. As for the dependence of b on wszo, we can
expect that the general trend of increasing b with decreasing wso holds more true
and approaches the ideal quadratic dependence of b ox 1/w2, for smaller Atso and
smaller /.. Deviation from this trend is expected to occur in the case of large Atsg

and large [., as can be seen from comparing the corresponding curves between

Figs. 12 and 15 for I, = 10 mm and Atz = 5 ps.

3.2 Noncollinear Phase Matching

Up to this point, all previous discussions on numerical simulations only considered
the collinear phase matching geometry in KTP crystal. As we have mentioned
previously, for certain experimental conditions, noncollinear phase matching will
enhance the parametric efficiency. In this section, we will briefly discuss the method
for maximizing the parametric coefficient, b, and compare the values of b of the
collinear case with that of the noncollinear case. The change in the values of the
characteristic lengths from the collinear case to the noncollinear case is also briefly

discussed.
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3.2.1 Maximization of Parametric Efficiency Coefficient for Noncollinear

Phase Matching Cases

As we have discussed in section 2.5, to increase the parametric efficiency, l,,, needs
to be maximized. In order for us to maximize l,,, we first found a collinear
phase matching angle, defined as 6., for a given set of the signal, idler, and pump
wavelengths that satisfy Eq. (1). As we have mentioned previously, a; = 7; + ¢;.
For collinear phase matching, 7; = 7, = 43 = 0° while the values of ¢;’s depend on
the polarization of the corresponding waves. Considering Type II, 0 — e+ o phase
matching conditions, @, = 3 = 0° and ¢ is calculated by substituting 6. and A,
into Eq. (51). Substituting corresponding values of 7;’s and ¢;’s in the definition
of a;’s yields that a; = a3 =0° and a, = a3 = ¢y, as shown in Fig. 5.

For the noncollinear phase matching geometry, we scan 6; from 6. to 8. + ||
in small increments. For a fixed set of the signal, idler, and the pump wavelengths
with 43 = 0°, the calculations show that n.(61) < n(f.) where ; < 0. There-
fore, we did not need to scan 8; from 6, — |a.| to 6. because there is no possible
noncollinear phase matching solution for any values of 4, and 7,. Therefore, for
a given value of 0;, we solved Eqgs. (52) and (53) and determined the values of 1
and ;. It is possible to have two sets of 71 and 7, that satisfy Eqs. (52) and (53)
because of geometrical symmetry. In other words, for a given set of solutions, 1
and 72, the respective signs of 7; and 7, can be reversed and Egs. (52) and (53)
are still satisfied. For Type II, 0 — e + o phase matching geometry in KTP, the
negative v; was not considered because of the reasons stated in section 2.5. With

the known values of 6y, 71, 72, and 73, 03 and 6, are calculated from 83 = 6, — 7
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and 0; = 03 + 7., respectively. From these values of §’s, the values of ¢’s are de-
termined. Since we only considered Type II, 0 — e + o phase matching geometry
in KTP, only ¢, was calculated using Eq. (51). a;’s are calculated by substituting
corresponding values of ¢’s and 4’s in a; = ¢; +7;. For each increment of 6,
l,, was calculated with the corresponding ’s. Finally, we only chose the set of
solutions that produces the maximum l,,, and then we used it to calculate the
characteristic lengths and the parametric efficiency coefficient.

To clarify the procedure, we chose two representative cases, Ay = 2 pm and
3.25 um, for the pump wavelength 1.053 pm with o — e 4+ o phase matching ge-
ometry. As shown in Fig. 5, these two cases were chosen because they are at the
opposite ends of the signal wavelength range, where the shorter signal wavelength
results in a relatively substantial walk off-angle, oy = 2.72°, and the longer wave-
length results in a relatively small walk-off angle, a; = 0.62°. To further discuss
the method, the changes in a’s, 4’s, and the corresponding values of l,,, are plotted
for Ay = 2 pm in Fig. 18 and for A; = 3.25 pm in Fig. 19, respectively. In general,
the maximum value of /,,, occurs where o; and a; are equal to each other for this
minimizes the value of the denominator in Eq. (11). This type of maximization
in noncollinear phase matching will increase the value of [,,, roughly about 2 to 3

times that of [, for the collinear phase matching.

3.2.2 Characteristic Lengths for Noncollinear Phase Matching

As we examine the equations for the spatial characteristic lengths, Egs. (9), (10),
and (11), we notice that only I . and I, are affected by the phase-matching ge-

ometry. As shown in Fig. 20, the values of I/, do not change but I, and [,
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do. Compared to the values of l,,’s for the collinear phase matching geometry
in Fig. 7 (c), that of l,,’s for the noncollinear in Fig. 20 (c) are generally 2 to 3
times greater. It is also interesting to see that the plot of I, normalized with re-
spect to the pump beam waist is strikingly similar to that of ;. As we mentioned
before, I, is a length parameter characterizing the effect of spatial beam broaden-
ing due to diffraction while I, is a characteristic length of the combined effect of
beam broadening and beam walk-off. Since the beam walk-off had been compen-
sated with the noncollinear phase matching geometry, the values of /,. shown in
Fig. 20 (b) naturally approach those of I,, shown in Fig. 20 (a).

The effects of noncollinear phase matching on the characteristic lengths can be
summarized in Fig. 21 which is a counterpart to Fig. 9. As expected, all curves
for the noncollinear phase matching were shifted up compare to the ones in the
collinear phase matching geometry. This in essence increases the spatial dominance
roughly by a factor of two. The region above the curves in Fig. 21, once again, is the
region of spatial dominance where the temporal effects do not limit the parametric
efficiency. This implies that noncollinear phase matching is only useful for the
region above the curves in Fig. 21. This implication is realized when comparing

the parametric efficiency coefficients in the following section.

3.2.3 Parametric Efficiency Coefficient for Noncollinear Phase Match-
ing

The effects of maximizing the parametric efficiency coefficient using the non-

collinear phase matching geometry can be summarized in two sentences. One is

that there was a substantial increase in the parametric efficiency coefficient, unless
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Figure 21: Ratio of pump pulsewidth to pump beam waist when spatial and tempo-
ral walk-off lengths are equal as a function of signal wavelength for three different
pump wavelengths at 1.053 ygm, 780 nm, 527 nm using noncollinear phase match-
ing geometry. The solid curves are for 0 — o + e phase matching and the dashed
curves are for o = e+ o.

limited by the crystal length, for conditions where the spatial effects are dominant.
The other is that there is no substantial gain in implementing noncollinear phase
matching for the systems in which the temporal effects are dominant.

Before we start discussing the effects of noncollinear phase-matching on the
parametric efficiency, pertinent issues in the calculation of b should be addressed.
In short, for Type II phase-matching conditions assumed in the previous section,
the value of 6 to be used to calculate y.g is .. 0. is defined as the angle between
z-axis and the direction of the wave propagation for an extraordinary wave. In
collinear phase-matching, the value of 8 substituted in calculating the value of x.s
was simply 0, because 6, = 0. For noncollinear phase-matching, however, 6. = 6,
for 0 — e + o interaction and 6, = 8, for o — o + e interaction. In summary, the
change in the values of x.g from the collinear case to the noncollinear case is very
slight because the deviation of calculated 6;(or 6;) from 6. is very small and is

always less than «a..
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Figure 22: Parametric efficiency coefficient in KTP as a function of signal wave-
length in the case of w3y = 100 pm and Atz = 5 ps for three different pump
wavelengths at (a) 1.053 pm, (b) 780 nm, and (c) 527 nm using noncollinear phase
matching geometry. The solid curves are for 0 — 0 + e phase matching and the
dashed curves are for 0 — e + o.
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Figure 23: Parametric efficiency coefficient in KTP as a function of signal wave-
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Figure 24: Parametric efficiency coefficient in KTP as a function of signal wave-
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- wavelengths at (a) 1.053 pm, (b) 780 nm, and (c) 527 nm using noncollinear phase
matching geometry. The solid curves are for 0 — o + e phase matching and the
dashed curves are for 0 — e + o.




As shown in Figs. 22, the parametric efficiency coefficient has increased 2 to 3
times that of the collinear case in Figs. 12 for the crystal lengths of 5 and 10 mm.
Naturally, the parametric efficiency coefficient for the crystal length of 1 mm has
not increased much because in this case the parametric interaction length is limited
by the physical length of the crystal. The effects of the noncollinear phase-matching
geometry on the parametric efficiency become less pronounced as we compare the
cases of wap = 100 pm and Atz = 500 fs in Fig. 23. The increase in the value
of the parametric efficiency is virtually zero for I. = 1 mm and is much less for
I, =5 and 10 mm than the Atz = 5 ps cases. As we compare the region where
the temporal effects are dominant, shown in Fig. 24 in comparison to Fig. 14, the
increase in the value of b is scarce and noncollinear phase matching geometry is
not necessary under these circumstances.

Moreover, the effects of noncollinear phase matching geometry is even more
pronounced in the case where w3p = 20 pm and Atz = 5 ps. As shown in Fig. 25
in comparison with Fig. 15, the values of b have increased substantially even for
the case of I, = 1 mm. Even for the cases of Atzg = 500 fs and Atzp = 50 fs, shown
in Figs. 26 and 27, respectively, in comparison with Figs. 16 and 17, there is still
some increase in the values of b in virtually all different cases except for the case
of wap = 20 um, Atzp = 50 fs, and A3 = 527 nm where the temporal effects are

most dominant.
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Figure 25: Parametric efficiency coefficient in KTP as a function of signal wave-
length in the case of wzp = 20 yum and Atz = 5 ps for three different pump
wavelengths at (a) 1.053 pm, (b) 780 nm, and (c) 527 nm using noncollinear phase
matching geometry. The solid curves are for 0 — o + e phase matching and the
dashed curves are for 0 — € + o.
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Figure 26: Parametric efficiency coefficient in KTP as a function of signal wave-
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Figure 27: Parametric efficiency coefficient in KTP as a function of signal wave-
length in the case of wzp = 20 um and Atz = 50 fs for three different pump
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dashed curves are for 0 — e + o.
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4.0 Pump Laser System

Continuous wave (cw) mode-locked laser systems which generate repetitive
short optical pulses with high peak power can be used in many scientific appli-
cations, e.g., pumping sources for synchronously pumped optical parametric oscil-
lators (OPO), time-resolved spectroscopy, and electro-optic sampling. Therefore,
the noise characteristics of cw mode-locked laser systems are very important in
the study of ultrafast phenomena. In this section, the experimental setup and
the noise characteristics of the pump laser system are discussed. The pump laser
system used in the experiments is a Nd:YLF laser system which can be operated
in two different mode-locking schemes: active mode-locking and additive-pulse
mode-locking (APM). The differences of the noise characteristics between these

two systems under cavity length detuning are also compared.

4.1 Experimental Setup

Figure 28 shows the schematic diagram of the experimental setup. The laser main
cavity is a flashlamp-pumped Quantronix 416 Nd:YLF laser and the external cavity
is formed by a beam splitter with a reflectivity of 90%, a 60-cm long optical fiber
as the nonlinear medium, and a concave mirror as the retroreflector. When the
external cavity is blocked, the laser can be actively mode-locked to generate pulses
with 30 ps full width at half maximum (FWHM) pulsewidth at a repetition rate of
76 MHz while the useful average output power is 9 W. When the external cavity
is unblocked, nearly transform-limited pulses with 6.4 ps FWHM pulsewidth at a
repetition rate of 76 MHz can be generated by the self-starting APM process with

an average output power of 9 W [56, 57]. Figure 29 shows the autocorrelation trace
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Figure 29: The autocorrelation trace of the APM Nd:YLF laser pulse.

of the APM pulse. Figure 30 shows the spectrum of the APM pulse. The FWHM
spectral width is 0.3 nm. The time-bandwidth product is 0.52 assuming Gaussian
pulse shape.

The tips of the fiber used in the external cavity were carefully polished with
an angle to avoid reflection into the main cavity. In order to achieve the APM
operation, the length of the external cavity has to be matched to that of the laser
main cavity. A photodetector with 70 ps response time was used at the rear end
of the laser to monitor the alignment of external cavity. The photodetector was

attached to a sampling oscilloscope. When the coupling of the external cavity was
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optimized, the active mode-locker was turned on. Two pulses would be observed
on the sampling oscilloscope. One pulse was the pulse generated by the main
cavity and the other one was the pulse reflected back from the external cavity. By
adjusting the position of the microscope objective lens and that of the input fiber
tip, the alignment of the cavity length can be achieved. About 10% of the reflected
power from the external cavity was used for second harmonic generation(SHG),
the SHG signal was sent to a feedback circuit for active servo control of the main
cavity length to maintain stable APM operation[57]. To avoid the mechanical
vibrations from the water cooling system, the laser head is directly bolted down

to the optical table[56].

4.2 Noise Characteristics

In this section we describe the characterization of the noise behavior of our Nd:YLF
laser systems using the power spectrum techniques. The power spectrum tech-
niques [58, 59, 60, 61, 62, 63] are used to measure the laser amplitude noise and
timing jitter (fluctuations in the arrival time of the pulses). Under the approx-
imations that the timing jitter is small , that the amplitude noise and timing
jitter are not correlated, and that the pulsewidth has no fluctuation, the power
spectral densities of the laser pulse amplitude noise and pulse repetition timing
jitter can be deduced from the power spectra measured with a photodetector and
a spectrum analyzer. In the noise measurement the output pulses were sent to
an autocorrelator for pulsewidth measurement and a p-i-n photodetector for noise
spectrum measurement. The p-i-n photodetector, which has a 3-dB bandwidth

larger than 3 GHz, was connected to a Hewlett-Packard 8560A spectrum analyzer.

78




When the laser is operated in the APM mode, the optical spectrum of the reflected
light from the external cavity was examined by a monochromator to determine the
cavity length detuning[57].

We have measured the noise spectra of the actively mode-locked system and
the APM laser system under zero cavity-length detuning. The noise power spectra
of the 1st and 30th harmonics are measured. The resolution bandwidth, B, of the
spectrum analyzer is 30 Hz for a frequency offset less than 5 kHz and is 300 Hz
for an offset above 5 kHz. The single-sideband timing jitter noise spectra for both
APM and active mode-locking are shown in Fig. 31(a). The timing jitter noise
is seen to be higher when the laser is operated under APM than when it is under
active mode-locking. The timing jitter noise in both cases rolls off rapidly at the
frequency of about 1.5 kHz. Therefore, the timing jitter noise is dominated by the
low-frequency components. The rms timing jitter, o, for the laser is found to be
1.1 ps in the case of active mode-locking and 7.3 ps in the case of APM for the
frequency range from 50 Hz to 1.5 kHz. The higher timing jitter in the APM case
can be understood by the interferometrical nature of the APM process. The 7.3 ps
rms timing jitter of the APM laser is smaller than the 14 ps rms result of the self-
mode-locked Ti:sapphire laser[63] and is comparable to the 5-10 ps rms result of
the CPM laser[64]. The 1.08 ps rms timing jitter of the actively mode-locked laser
is considerably small since there is no active servo control of the cavity length. The
small noise is due to the good isolation of laser head from mechanical vibrations.

The amplitude noise spectra[59], again for both active mode-locking and APM
cases, are shown in Fig. 31(b). The amplitude noise spectral density of the actively

mode-locked case is similar to that of the APM case except that there is a noise
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peak at about 40 kHz in the active mode locking case. The rms amplitude fluctua-
tion, 04[59], for both cases are calculated to be 0.83% and 0.85%, respectively, for
the frequency range from 50 Hz to 1.5 kHz. The noise peak at 40 kHz is the relax-
ation oscillation frequency of this Nd:YLF laser. This peak appears in the case of
active mode-locking but is absent in the case of APM. APM laser systems with a
long fluorescence lifetime are prone to relaxation oscillation or self-Q-switching[65].
This has been the major difficulty of achieving stable APM operation in Nd:YAG
and Nd:YLF lasers in comparison to lasers with shorter florescence lifetime, such
as the Ti:sapphire laser. It can be seen from this measurement that the relaxation
oscillation of our APM has been completely suppressed under stable operation
conditions.

Actively mode-locked laser and APM laser have different noise characteristics
under cavity length detuning. Figure 32 shows the noise power spectral densities
L3o(f) of the 30th harmonic under cavity length detuning for both active mode-
locking and APM cases. The cavity length mismatch is 100 gm in both cases. In
the active mode-locking case, relaxation oscillation begins to dominate the noise
spectrum; consequently, the power spectrum method is no longer suitable for mea-
suring the amplitude noise and timing jitter noise in this case since the small
signal approximation is no longer valid. In contrast, relaxation oscillation is still
suppressed under cavity length detuning in APM case. Stable APM operation can
be maintained over a cavity detuning range from —400 gm to 300 pm.

Figures 33(a) and (b), respectively, show the rms timing jitter oy and the rms
amplitude noise o4 of the APM laser measured over the cavity detuning range. The

rms noise is calculated for the frequency range from 50 Hz to 1.5 kHz. A positive
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cavity mismatch means the external cavity is longer than the main cavity. Note
that both the rms timing jitter and the rms amplitude noise have their minimum
at zero cavity detuning, although the pulsewidth is not shortest at zero detuning
[57]. The rms amplitude noise is less sensitive to the cavity mismatch than the rms
timing jitter. Also the range of cavity mismatch is not symmetric. Although the
pulsewidth gets shorter when cavity mismatch is varied from positive to negative
values[57], it is better to operate the APM laser at the zero detuning point if
precise pulse arrival time is required in the experiments.

In summary, the timing jitter and the amplitude noise of a Nd:YLF laser in
both active mode-locking and APM modes have been characterized by using power
spectrum techniques. The rms timing jitter of the APM mode under zero cavity
detuning is about six times larger than that of the active mode-locking mode since
APM is a passive mode-locking process with interferometrical nature. The am-
plitude noise characteristics of these two mode-locking schemes are similar. Most
of the timing jitter and amplitude noise in both cases are in the frequencies be-
low 1.5 kHz. The low-frequency noise characteristics of this laser system implies
that when this laser is used to synchronously pump the optical parametric oscilla-
tors(OPO), the timing jitter of this laser system should not affect the efficiency of
OPO since there is no gain storage time in OPOs and the build-up time of OPO
is on the order of microseconds. Relaxation oscillation have been observed in the
actively mode-locking case. Under cavity detuning, the noise spectra of the ac-
tively mode-locked laser are dominated by the relaxation oscillation. In contrast,
relaxation oscillation is completely suppressed in the APM mode even under cavity

detuning situation. The complete suppression of relaxation oscillation in the noise
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spectra of the APM operation explains why our APM Nd:YLF laser has been so
stable despite the fact that Nd:YLF laser has a fluorescence lifetime as long as
480 ps.

Recently, we theoretically derived and experimentally demonstrated a method
to further characterize the pulsewidth fluctuation noise of the cw mode-locked laser

pulses. The method is given as an appendix at the end of this report.
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5.0 AgGa$S, Based Optical Parametric Oscillator

Among all the nonlinear crystals, AgGaS; has been known for its large transmission
window which covers 0.5 to 13.2 um and its high nonlinearity. However, due to
its low damage threshold, it is difficult to build a synchronously pumped OPO
based on this crystal. Recently, Cheung et al. [16] first demonstrated a singly
resonant AgGaS; OPO pumped by a continuous wave mode-locked Nd:YAG laser.
Cheung’s OPO produced wavelength-tunable optical pulses at 1.3 pm and 5.5 pm
wavelength range. In this section, we discuss the efforts of the construction of
a synchronously pumped OPO based on AgGaS, which was intended to produce
wavelength-tunable optical pulses at 10-11 ym range. Some experimental results

are presented.

5.1 Nonlinear Crystal

The nonlinear crystals used in this experiment are two 5x5x10 mm AgGaS; crys-
tals. These AgGaS; crystals are cut at § = 38.01° and ¢ = 0° for type II phase

matching e — o + e. The effective nonlinear coefficient d.g is
det = dy45in 20 cos 2¢. (62)

The signal wavelength is 1.169ym and the idler wavelength is 10.6pm for the
Nd:YLF pump wavelength of 1.053um.

Figure 34 shows the calculated tuning curves for both Type I and II phase
matching. It can be seen from Fig. 34 that there is a gap between 1.7 pm and
2.71 pm for Type II phase matching. However, for the same signal wavelength

used in our experiment the Type I phase matching has a lower effective nonlinear
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coefficient d.g which is
dog = dy145in0sin2¢, (63)

where 6 is 35.8° and ¢ can be chosen to be 45°.

In comparsion with Cheung’s experiment, our OPO is in a less favorable sit-
uation because our signal and idler are far away from the degeneracy point and
the crystal has a large absorption coefficeint around the idler range of 10-11 pm.
Transmission through both crystals at pump and signal wavelengths is measured
to be 92%(92.8%) and 92% (92.9%), respectively. These values are roughly 4% less
that those in Cheung’s experiment. The poor transmission could lead to a higher
threshold for the OPO. The gain bandwidth has been estimated to be 0.36 nm by

using the equation

2refl

ny — Al(%"})xl —nz + )\2(%’?‘),\2 .

(64)

bw =

The angular tolerance is calculated to be 2.09 mrad for the signal wavelength at
1.16um. The dispersion between pump and signal is calculted to be 1.65 ps/cm
and that between pump and idler is calculated to be 9.67 ps/cm.

The pumping thresold can be estimated from the thresold condition[44]

g = 2t (65)
where
9 = 1—%7%?2 Xea (66)
= %XE&%L}U (67)
I, = n%%;lnﬁl?, (68)
Xefi = X14sin20, (69)
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lc is the crystal length, [ is the cavity length, R is the reflectivity of the output
coupler, and T is the transmittance of the crystal at the signal wavelength. From
the equation above, we can find the relationship between the threshold intensity

and all the physical parameters in our case:

1 1
Ith X n1n2n3/\1/\2m In Ej;

(70)
Using the estimation above, for the same pump pulsewidth the power thresold for
our OPO is about 1.9 times higher than that in Cheung’s experiment, i.e., the
average power threshold of our OPO would be 5.7 W and 1.2 W for pulses with

pulsewidths of 30 ps the 6.4 ps at the repetition rate of 76 MHz, respectively.

5.2 Experimental Setup

Figure 35 shows the experimental setup of the AgGaS, OPO. The pump source
is a Quantronix 416 Nd:YLF laser which can be operated in two modes: (1) ew
actively mode-locked mode which can generate 30 ps pulses at 76 MHz with an
average power of 9.5 W (2) Additive-pulse mode-locked mode which can generate
6 ps pulses at 76 MHz with an average power of 10 W. A half-wave plate was
used to control the incident pump polarization. Two lenses of 50 and 100 cm focal
length were used to mode-match the pump with the signal in the OPO cavity. The
1/€?* beam spot size of the pump at the crystal could be varied from 150 to 200um.
A 1:10 chopper was used to modulate the pump in order to prevent the possible
damage to the crystal. The OPO cavity was a bow-tie ring cavity which consisted
of two curved mirrors and two flat mirrors to reduce loss and retro-reflect. The

radius of curvature of the curved mirrors was 120 cm. The beam waist of the signal
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could be varied from 110 to 330 gm by changing the separation between the two
curved mirrors from 120.5 cm to 160 cm. The two curved mirrors were coated to
have high transmission (HT) at the 1.053 pm pump wavelength and high reflection
(HR) at the 1.169 pm signal wavelength. One flat mirror was also HR coated at
the signal wavelength. The other flat mirror was a 99% output coupler for the
signal. Although the curved mirror was HT coated at the pump wavelength, only
7.5 W of pump could be delivered to the crystal due to the losses from all the
optical components. The crystals were mounted on rotational stages in order to
tune their angles. Both single crystal and double crystal configurations have been

tried.

5.3 Results

The OPO cavity was aligned by monitoring the parametric fluorescence which was
detected by a liquid-nitrogen cooled Ge detector and lock-in amplifier combina-
tion. A WOQO1414 low pass filter and a tilted 1.064 ym HR mirror were used to
filter out the pump wavelength. The parametric fluorescence could be tuned from
1.16 pm to 1.185 pum by tuning the crystal angle. A multiple pass versus single
pass enhancement factor of 7 has been observed. However, no oscillation has been
achieved either using the actively mode-locked laser pulses or using the APM laser
pulses. The cavity length was also measured by a 1.16 gm pulse train which was
the second order Raman signal from a 400 m polarization preserving fiber pumped
by the 1.053 um pump. As we discussed above, the average power threshold of our
OPO should be higher than that in Cheung’s experiment because the higher loss

in our crystals and the intrinsic lower parametric gain.
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In order to have better understanding of the parametric process in this crystal,
we tried to setup a differnce frequency generation(DFG) experiment by mixing the
1.053 pm and the 1.16 pm second order Raman from the fiber in the crystal. The
pump was first sent through the crystal and a ZeGe beam spliter which transmitted
almost 75% of the pump and reflected 70% of the 10.6 ym. After the beam splitter,
the pump was coupled into the fiber by using the microscope object lens and two
lenses with focal length of 75 cm and 30 cm, respectively. 3 W of pump was coupled
into the fiber. After the fiber, the light was sent through a delay line which consists
of two prisms and a motorized translation stage. Time domain synchronization was
achieved by monitoring the pump and Raman pulses on a sampling oscilloscope.
The idler wavelength is 11.41 pym and the average idler power is estimated by the

following equation

5
P
327 2 22 1P2 (71)

= X
cA3ningng 74

Ps

where 1, 2, and 3 correspond to the signal, idler, pump and P is the peak power,
n is the index of refraction, X is the wavelength, z is the crystal length, and A
means the spot area. The nonlinear coefficient x.s can be represented by the deg

as followed

3 x 10*

Xefi(esu) = 2 X deg(mks) x (72)

With pump power of 7.5 W and 1.16 pm power of 500 mW, 7 mW of 11.41 pm
mid-infrared can be generated by a 1 cm crystal with the pump and signal spot size
of 160 pm. However, the bandwidth of the 1.16 pm Raman light is around 10 nm
which is almost 30 times larger than the gain bandwidth of the crystal. Therefore,

at most 200 4W mid-infrared light can be obtained by DFG. Due to the limitation
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of the available equipment in our laboratory, the mid-infrared 11.41 pm light is
detected by a Gentec pyroelectric joule meter and lock-in amplifier. However, the
sensitivity of this detection system is calibrated to be only 16 uW by using the 1 ym
light. No mid-infrared signal has been observed. There are two possible reasons
why we did not observe the mid-infrared signal. First, the detection system is not
sensitive enough and is too noisy. Second, in the calculation above, loss of the
crystal and dispersion have not been taken into account.

Although AgGaS; provides a possibility to extend the tunable optical source to
mid-infrared range, due to the intrinsic disadvantage of the parametric process and
the strong absorption at the idler wavelength range, crystals with better quality
and more powerful pump sources are needed to explore the mid-infrared region.

Injection seeded OPO could be a possible solution if a narrower linewidth seed

source is available.




6.0 Picosecond KTP Optical Parametric

Oscillator

The design and characteristics of a KTiOPO, singly resonant optical paramet-
ric oscillator synchronously pumped by the second harmonic of an additive-pulse
mode-locked Nd:YLF laser are discussed in this section. The pump pulses at
527 nm wavelength have a pulsewidth of 4.5 ps, a repetition rate of 76 MHz, and
an average power up to 4 W. Above the threshold of 900 mW average pump power,
continuous tuning is demonstrated from 851 to 938 nm in the signal branch and
from 1200 to 1381 nm in the idler branch. At three times the threshold, 3.2 ps
signal pulses with an average power of 83 mW and 2.4 ps idler pulses with an av-
erage power of 280 mW are obtained. High-order transverse mode characteristics

and multiple-wavelength oscillation are also discussed.

6.1 Introduction

Among the existing synchronously pumped OPOs, KTiOPO4 (KTP) is the most
commonly used crystal for the nonlinear gain medium because of its high non-
linear coefficient. Edelstein et al.[17] and Wachman et al.[66] first demonstrated
a KTP-based singly resonant mode-locked OPO synchronously pumped inside a
colliding-pulse mode-locked dye laser. A doubly resonant KTP OPO pumped by
the second-harmonic of a cw mode-locked diode-laser-pumped Nd:YLF laser was
reported by Ebrahimzadeh et al.[7]. The first externally synchronously pumped
OPO was demonstrated by Mak et al.[19] where the pump laser used was a hybridly

mode-locked dye laser. McCarthy et al.[8] and Grasser et al.[10] reported singly
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reéonant KTP OPOs synchronously pumped by the second harmonic of diode-laser-
pumped additive-pulse mode-locked (APM) and actively mode-locked Nd:YLF
lasers. The KTP crystals were both cut in the zy-plane for quasi-noncritical phase
matching, and the wavelength tuning range is roughly 940-1180 nm. With the
development of self-mode-locked Ti:sapphire laser, many KTP OPOs have been
reported[20, 21, 9, 24], which covered ~1050-1370 nm and ~1780-2870 nm spec-
tral range. Chung et al.[11] and Grasser et al.[10] demonstrated cw mode-locked
KTP OPOs synchronously pumped by a compressed actively mode-locked Nd:YAG
laser and an actively mode-locked Nd:YLF laser, respectively. The output can be
tuned over 1570-1590 nm and 3210-3300 nm.

In this section, the characteristics of a singly resonant KTP OPO synchronously
pumped by the second harmonic of a flashlamp-pumped APM Nd:YLF laser are
discussed. The KTP crystal was cut in the zz-plane which potentially allows the
wavelength tuning range to cover most of the transparency window of the KTP
crystal from 600 to 4500 nm. The uniqueness of our pump system is that we can
generate ~ 4.5 ps mode-locked pulses at 527 nm with an average power up to
4 W, thus overcoming the high threshold of the OPO with KTP in this particular
phase matching plane. In Section 6.2 the experimental layout is discussed. In
Section 6.3 the general characteristics of the OPO is presented. Comparison be-
tween the experimental results and previous theoretical simulations[4, 5] is made.
In Section 6.4, we discuss the characteristics of high-order transverse mode and
multiple-wavelength oscillation in the OPO. Discussions and summary are given

in Section 6.5.
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6.2 Experimental Setup

A schematic diagram of the OPO setup is shown in Figure 1. The pump source is a
flashlamp-pumped APM Nd:YLF laser at 1053 nm wavelength with 9 W of average
output power at a repetition rate of 76 MHz and a pulsewidth of 6.4 ps[56]. These
pulses were frequency-doubled using a hydrothermally-grown KTP cut in the zy-
plane at ¢ = 35°. The crystal dimensions of the KTP are 3x3x5 mm. Pulses at
527 nm with a pulsewidth of 4.5 ps and an average power up to 4 W were generated
for pumping the OPO. Figure 36 and Fig. 37 show the autocorrelation trace and
the spectrum of the 527 nm pulse, respectively. The FWHM spectral width is
0.13 nm and the time-bandwidth product is 0.64 a.ssumiﬁg Gaussian pulse shape.

However, long-term operation of the second-harmonic generation(SHG) at such
high power is still quite difficult due to the gray track problem of the KTP crystal.
Therefore, we chopped the fundamental beam of the Nd:YLF laser with a 10:1 duty
cycle for the protection of the SHG KTP crystal during most of the experiment.
Two lenses of 12.5 cm focal length were used to couple the pump into the OPO
cavity. The pump Gaussian beam waist in the crystal was about 20 ym and the
confocal parameter was approximately equal to the OPO KTP crystal length of
5 mm.

The resonator of the OPO was chosen to be a ring cavity in order to reduce
the signal loss and the retro-feedback problem. The radius of curvature of the
two curved mirrors was 20 cm. The Gaussian beam waist of the signal beam was
calculated to be 26 um in order to give the same confocal parameters as the 20 pm
pump beam. The incidence angle on the curved mirror is ~2.5°. The two curved

mirrors have a reflectivity of 99.9% centered at the signal wavelength (890 nm) and
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Figure 36: The autocorrelation trace of the 527 nm pump pulse
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a transmissivity of 90% at the 527 nm pump wavelength. One of the two plane
mirrors also has a reflectivity of 99.9% at the signal wavelength. The other plane
mirror is a 2% output coupler which is mounted on a motorized translation stage
for fine tuning of the cavity-length.

Collinear phase matching can be achieved in the zy-, 2z, or yzplane in KTP for
the 527 nm pump wavelength. Figure 39 shows the parametric wavelength-tuning
curves for KTP pumped at 527 nm (left) and 1053 nm (right) as a function of phase
matching angle for different crystal cuts to phase match in the zy-, 22z, and yz
planes, respectively. Among the three possibilities, phase matching in the zy-plane
has a limited tuning range due to the low birefringence in this plane[14]. Phase
matching in the zz- or yz-plane allows tuning over most of the transparency range
of the KTP crystal, except that the tuning curve in the zz-plane has a gap near
degeneracy point[67]. Another advantage of phase matching in the zz or yz-plane
is that the signal wavelength change is more sensitive to the change in the phase
matching angle in comparison with phase matching in the zy-plane. However,
existing synchronously pumped KTP-based OPOs with the pump wavelength at
527 nm all have phase matching in the zy-plane[8, 10]. This is because phase
matching in the zz- or yzplane for widely tunable operation has a higher threshold
for the OPO mainly due to the small effective interaction length as a result of the
large Poynting-vector walk-off in these phase-matching planes[14]. We overcome
thus problem by using more intense pump radiation. Since the effective nonlinear
coefficient of a given signal wavelength for the phase matching in the zzplane is
higher than that in the yzplane[67], phase matching in the zz-plane was chosen

for our experiment.
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Figure 39: Parametric wavelength-tuning curves for KTP pumped at 527 nm(left)
and 1053 nm(right) as a function of phase matching angle for different crystal cuts
to phase match in the zy, zz-, and yzplanes, respectively.
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The OPO gain medium is a flux-grown KTP crystal which is cut in the zz-plane
at 8 = 69° and ¢ = 0° for type-Il(0 — e + o) collinear phase matching, in which
the 527 nm pump beam and the 1291 nm idler are polarized along the y-axis and
the 890 nm signal is polarized in the zz-plane. The idler near 1300 nm wavelength
range is useful for the study of the characteristics of the fiber-communication de-
vices and systems. The crystal dimensions were 3x3x5 mm. The surfaces of
the OPO KTP crystal were antireflection-coated at the signal wavelength. The
reflection and absorption losses at 527 nm were measured to be 7% and 2.7%, re-
spectively. The reflection and absorption losses at the signal and idler wavelengths
were not measured due to the lack of available light sources. The effective nonlinear
coefficient in the zzplane is dysinf. The nonlinear coefficient dz4 was measured
to be 4.1 pm/V from the spectral brightness of parametric fluorescence[68)].

The alignment of the OPO was accomplished by monitoring the parametric
fluorescence leaking from the output coupler with a liquid-nitrogen-cooled Ge de-
tector mounted on a monochromator. The responsivity of the Ge detector is 4x10°
V/W. The alignment was started with angular adjustment of the mirrors. The four
cavity mirrors were adjusted so that the parametric fluorescence was enhanced. Af-
ter the angular adjustment was optimized, the position of the output coupler was

changed by moving the translation stage to achieve oscillation.

6.3 Characteristics of OPO

The OPO output power versus pump power is shown in Fig. 40. The average power

is defined as the average power during the opening time window of the chopper. No
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change in the average power was observed when the duty cycle of the chopper was
changed to 4:1 and 20:1. Due to the Fresnel losses of the optics and the reflection
loss of the crystal, only 72.5% of the available pump power was sent into the OPO
crystal.

With 2.9 W of 527 nm pump power sent into the OPO crystal, about 83 mW of
signal and 288 mW of idler were generated at the output coupler and at the second
curved mirror, respectively. The average pump power at threshold was 900 mW.
According to recent theoretical analysis[69], the average pump power threshold
was calculated to be about 760 mW. The higher power threshold observed in
the experiment indicates a estimated total cavity loss of 2.4% per round trip, of
which 2.0% was from the output coupler and 0.4% was possibly due to the three
highly reflective mirrors and the losses from the KTP crystal. The total conversion
efficiency was about 13 %. The total slope efficiency was approximately 19 %.

Figure 41 shows the total signal efficiency and the total idler efficiency versus
the average pump power. The total signal efficiency and the total idler efficiency
are defined as the percentage of the output signal power to the input pump power
and that of the output idler power to the input pump power, respectively. The
total signal efficiency peaks at about two times the threshold and then decreases
with increasing pump power. The total idler efficiency is higher than the total
signal efficiency and begins to saturate after the pump power is larger than about
two times the threshold. Although the signal efficiency depends on the reflectivity
of the output coupler, no attempt has been made to further improve the signal
efficiency due to the lack of available output couplers with different reflectivities.

Figure 42 shows the percentage of pump depletion and the total conversion
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Figure 40: The average signal and idler output power versus the average pump
power sent into the KTP crystal.
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Figure 41: The total signal and idler efficiency versus the average power sent into
the KTP crystal.
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Figure 42: The percentage of pump depletion and total conversion efficiency versus
the average power sent into the KTP crystal.
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efficiency versus pump power. The amount of pump depletion was deduced by‘
measuring the average power of the transmitted pump beam when the OPO oscil-
lated and when the OPO was blocked from oscillation. The percentage of pump
depletion and the total conversion efficiency both saturate after the pump power
is larger than about two times the threshold. The highest pump depletion per-
centage was about 38 %, which implies the parametric conversion is very efficient
inside the cavity. However, the highest total conversion efficiency was only 13 %.
Absorption and scattering losses of the crystal and mirrors are the possible rea-
sons leading to the low conversion efficiency. From the experimentally measured
ratio of the output idler power to the output signal power, the additional intra-
cavity signal loss can be estimated. The estimated additional intracavity signal
loss at three times the threshold was 7 %, which is much larger than the 0.4 %
additional intracavity signal loss estimated from the power threshold. The exact
mechanism responsible for the discrepancies between the pump depletion and the
total conversion efficiency is still under investigation.

The autocorrelation curves of the signal and idler pulses at highest OPO out-
put power are shown in Figs. 43(a) and (b), respectively. The autocorrelation
curves were better fitted by assuming a Gaussian pulse shape than a sech? pulse
shape. Assuming a Gaussian pulse shape, the signal pulse had a full-width at half-
maximum(FWHM) pulsewidth of 3.2 ps and idler pulsewidth was 2.4 ps FWHM.
The signal and idler spectra shown in Figs. 44(a) and (b), respectively, were mea-
sured with a monochromator of ~ 0.06 nm resolution. The shape of spectra is not

symmetric. The FWHM spectral widths were 0.5 nm and 1.1 nm for signal and
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Figure 43: The background-free autocorrelation of (a) the signal pulses at the
wavelength of 889 nm and (b) the idler pulses at wavelength of 1292 nm. The dots
correspond to the experimental data; the solid line is the theoretical fitting curve
assuming a Gaussian pulse shape.
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Figure 44: Spectrum of (a) the signal pulses at the wavelength of 889 nm and (b)
the idler pulses at the wavelength of 1292 nm.
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idler, respectively. The time-bandwidth product of the signal pulse is 0.61, cor-
responding to 1.39 times the transform-limited value for a Gaussian pulse shape,
while that of the idler pulse is 0.47, which is only 1.07 times the transform limit.
The spatial profile of the signal was a TEMgo mode. Figure 45 shows the TEMgq
mode signal output power versus the OPO cavity length detuning when the OPO
was operated at three times the threshold. In Figure 45, positive detuning means
the OPO cavity is shorter than the pump laser cavity and the zero detuning point
is chosen to correspond to the peak of the signal output power. The shape of
the detuning curve is asymmetric. The 6.75 um FWHM detuning range, which
corresponds to a 45 fs round-trip time mismatch, is in quantitative agreement with
previous simulation(4].

The wavelength tuning of our OPO is achieved by rotating the KTP crystal
about the yaxis. The calculated tuning curve and experimental data are both
shown in Fig. 46. The experimental data are in good agreement with the calcu-
lated tuning curve[67]. We achieved 87 nm tuning range in the signal branch(851-
938 nm) and 181 nm tuning range in the idler branch(1381-1200 nm) by rotating
~ 10° internal angle. The tuning range was limited by the mirror coatings and
the reduction of the effectiveness of the antirefelction coatings of the OPO crystal
caused by the crystal rotation. The wavelength tuning range is relatively large in
comparison with the KTP OPO phase-matched in the zyplane[8] due to the high

birefringence of KTP in zzplane.
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Figure 45: The single-wavelength TEMg, mode signal output power as a function
of cavity-length detuning.
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Figure 46: Tuning curve for KTP OPO phase-matched in zz-plane for a 527 nm
pump. Thick bars correspond to the experimental data points. Solid lines are
calculated tuning curves.
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6.4 High-Order Transverse Mode and Multiple wavelength

Oscillation

High-order transverse modes have been observed in an OPO by Mak et al.[19]. In
OPOs there are several parameters which can affect the transverse mode of the
signal, such as the spatial profile of the pump beam, the alignment of the cavity
mirrors, the focal point of the pump beam, the position of the crystal inside the
cavity, and the confocal parameters of the pump and signal beams. The spatial
profile of the pump beam directly affects the spatial profile of the gain distribution.
The alignment of the cavity mirrors determines the spatial mode of the signal and
thus deterrﬁines the coupling between the pump and signal beams. The focal point
of the pump beam, the position of the crystal, and the confocal parameters of pump
and signal beams also affect the coupling between the pump and signal.

In our OPO, high-order Cartesian transverse modes were also observed occa-
sionally. The high-order transverse mode in our OPO is partially caused by the
slightly elliptical profile of the pump beam and the astigmatism introduced byvthe
folded ring cavity. The elliptical pump beam profile was caused by the walk-off
of the 527 nm beam in the SHG KTP crystal. For example, Figure 47 shows the
signal spectrums of TEMgo and TEM;; modes of the OPO output. The TEMy;

mode was obtained intentionally by changing the angular alignment of the cav-
ity mirrors. It is clear that the center wavelength is identical in these two cases.
The calculated wavelength separation between TEMgy mode and TEM;; mode is
0.00037 nm, which is far smaller than the resolution of the monochromator used

in the experiment. However, the FWHM spectral width becomes larger in the
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Figure 47: Spectra of the signal pulses with different transverse modes. The solid
line represents the spectrum of a TEMgo mode and the dashed line corresponds to
the spectrum of a TEM;; mode.

114




TEM;; mode case, which is not expected in the normal laser system. The high-
order transverse mode can be suppressed by inserting an aperture inside the cavity,
but with up to 40 % decrease of the output power. However, the aperture was
needed only when the high-order transverse mode was intentionally generated.

In conventional lasers, the lasing wavelength is determined by the energy sep-
aration between the lasing levels, which does not depend on the cavity alignment.
However, the output wavelength of OPO is determined by the phase matching con-
dition, which is dependent on the spatial arrangement of the pump beam, cavity
mode, and angle of the crystal.

For instance, we found that under certain conditions the spectral width can be
very broad while the spatial profile of the signal beam still maintains the circular
shape of the TEMgo mode. Figures 48(a), (c), and (e) show three different spectra
of the signal under three different angular alignment conditions of the cavity mir-
rors at the same pumping level without tuning the crystal angle. Figures 48(b), (d),
and (f) show the corresponding idler spectra. In Fig. reff:ktpmulti(a), two wave-
length peaks were observed and the separation between these two signal peaks is
about 2.5 nm which is much larger than the separation between the frequencies
of different transverse modes. The difference between the phase-matching angles
of these two peak wavelengths is 0.2 degree, or 5 mrad. This shows that two dif-
ferent crystal signal wavelengths oscillate simultaneously. The coexistence of two

different signal wavelengths, and corresponding two different idler wavelengths,

indicates that both satisfy the phase-matching condition inside the OPO. This is
possible because of the large phase-matching bandwidth in our case. The slightly

elliptical pump beam profile and the short effective interaction length are also
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Figure 48: Spectra of the signal and idler pulses under different conditions of
multiple-wavelength oscillation.
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the possible reasons leading to the multiple-wavelength oscillation under specific
alignment conditions.

In Fig. 48(c), the separation between the wavelengths becomes smaller such that
it is hard to resolve the peak wavelengths. In Fig. 48(e), the spectrum becomes
symmetrical and the FWHM spectral width is about 2 times the value of the
TEMg single wavelength case. No change of the pulsewidth was observed in all
three cases.

The output power under the condition of multiple-wavelength oscillation is
slightly higher than that of the single-wavelength TEMgy mode. The output power
also becomes less stable in this case, which indicates the possibility of competi-
tion between different oscillating wavelengths. Figure 49 shows the signal output
power versus the cavity detuning when the OPO was operated in the condition
of Fig. 48(e). Clearly there are three peaks of the signal power in this detuning
curve, which is the convolution of different single-wavelength detuning curves. The
FWHM detuning range is about 30 4m which is about 3.4 times larger than that
of the single-wavelength TEMqo mode case. Therefore, special care has to be taken
when aligning the OPO cavity in order to avoid the multiple wavelength oscillation

if narrow bandwidth is needed for the application.

6.5 Discussions and Summary

The threshold of an OPO is determined by setting the small signal gain equal to
the total cavity loss. Therefore, the spatial and temporal effects which affect the

small signal gain of the nonlinear medium are the limiting factors of the efficiency
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Figure 49: Signal output power as a function of cavity-length detuning under the
condition of Fig. 4.10(e) and (f).
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of the parametric interaction.

The spatial beam walk-off angle is calculated to be 36 mrad at the center of
the spectral tuning range where A, = 890 nm and ); = 1291 nm. The spatial
aperture length /,,[69] is calculated to be 0.68 mm for a pump Gaussian beam
waist of 20 um. The temporal aperture length [;,[69] in our case is calculated
to be 10.7 mm for the 4.5 ps pump pulsewidth. The net walk-off length [, with
compounded spatial and temporal walk-off effect is 0.68 mm. It is clear that the
net walk-off length is dominated by the spatial walk-off effect. According to recent
theoretical analysis[69], the optimal crystal length I, is 3/, which is 2.04 mm in
our case. Obviously, the spatial walk-off is the major limitation upon our OPO
efficiency due to the high birefringence with the phase-matching in the zz-plane
and the temporal walk-off is not important in our case.

The temporal pulse walk-off between the pump and signal pulses and that be-
tween the pump and idler pulses calculated from the center of the crystal assuming
a useful interaction length of 2.04 mm are 0.27 ps and 0.99 ps, respectively. Since
only the walk-off between the pump and the signal has the first order effect on the
performance of the OPQ[5], the temporal pulse walk-off is not the limiting factor
for our OPO with the 4.5 ps pump pulses. The analysis above indicates that the
5 mm crystal is too long for our current OPO design. One way to fully utilize
the 5 mm crystal is to enlarge the pump beam spot size and increase the signal
spot size in the cavity. Since curved mirrors with larger radius of curvature are
not available to us at this point, no attempt has been made to study the spatial
walk-off limitation.

Other spatial and temporal effects are not the limiting factors in our case.
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For example, the phase matching bandwidth é)A is calculated to be 3.67 nm at
the signal wavelength of 890 nm assuming 2.04 mm crystal length, which is equal
to the spectral width of a 0.31 ps transform-limited pulse assuming a Gaussian
pulse shape. Therefore, the phase-matching bandwidth of this crystal is wide
enough for the signal pulses. The pulse broadening effect due to group velocity
dispersion is not significant until the pump pulsewidth becomes less than 100 fs
for the parameters used in our study.

According to recent simulation[69], the threshold of this OPO will further de-
crease if we compress the pump pulse down to 500 fs. Although the temporal
aperture length l,, is decreased by a factor of 9 when the pump pulses are com-
pressed to 500 fs, l,, is still longer than the spatial aperture length l,,. Therefore,
the parametric process is still limited by the spatial walk-off. In the specific exam-
ple of A, = 890 nm and ); = 1291 nm, the net walk-off length [, is only slightly
reduced from 0.68 mm for 4.5 ps pulses to 0.59 mm for 500 fs pulses while the
peak power is increased by ninefold for the same average power. As a result, the
threshold of the OPO is reduced by 6.4 times[69]. With new crystals and other
sets of mirrors, generation of picosecond and femtosecond optical pulses with a
wide tuning range should be achievable.

In summary, we demonstrated a KTP based synchronously pumped singly reso-
nant OPO pumped with a frequency-doubled additive-pulse mode-locked Nd:YLF
laser. Signal pulses 3.2 ps in duration, tunable from 851 to 938 nm, and idler
pulses 2.4 ps in duration, tunable from 1200 to 1381 nm were obtained by angle
tuning. The experimental results were compared with previous theoretical analy-

ses. High-order transverse modes and multiple-wavelength oscillation in the OPO

120




were observed and discussed.
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7.0 Parametric Generation of Femtosecond

Optical Pulses

7.1 Introduction

Femtosecond optical pulses provide the ability to study ultrafast dynamic pro-
cesses. However, the pulsewidth directly generated by a CW mode-locked laser is
limited by the bandwidth of the gain medium. For Nd:YLF laser, the lower limit of
the pulsewidth is 0.9 ps[70, 71]. Therefore, in order to generate femtosecond pulses
from Nd:YLF laser, pulse compression technique is needed. The concept of optical
pulse compression originated from chirp radar{72]. Due to the combined effects of
self-phase modulation and group velocity dispersion in the fiber, the optical pulses
are broadened spectrally and chirped temporally after propagation in the optical
fiber. These pulses can be temporally compressed by use of the dispersive elements
such as grating pairs[73] or prism pairs[74].

In this section, two ways of generating femtosecond optical pulses at 527 nm are
presented. The first approach is by second harmonic generation of the compressed
femtosecond optical pulses at 1053 nm. The second approach is to compress the
picosecond optical pulses at 527 nm to subpicosecond regime. The experimental
results and practical limitations of both approaches are discussed. The results of
the threshold study of an optical parametric oscillator using femtosecond pulses

are also included.
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7.2 Second Harmonic Generation of Femtosecond Optical

Pulses at 1053nm

The experimental setup for compression of APM Nd:YLF laser pulses is similar to
that in Chee’s experiments[75]. The input to the pulse compressor was the optical
pulse train of 6.4 ps pulsewidth at 9.5 W of average power with a repetition rate
of 76 MHz, which was obtained from the APM Nd:YLF laser. The fiber used in
this experiment was a highly-birefringent single-mode fiber (YORK HB 1100/1).
The index difference An between core and cladding was characterized to be 0.006,
the birefringent index difference én between two axes of the fiber was 2.4 x 1074,
and the average core diameter was 6 ym. The length of the fiber was 85 cm.
Although the fiber tips were carefully polished to have an angle, an optical isolator
inserted between two halfwave plates was used before the input end of the fiber
to eliminate the optical feedback from the fiber end surface. A lens with a focal
length of 30 cm and a 10 x microscope objecfive lens (F-L10B) were used to couple
light into the fiber. Typical coupling efficiency into the fiber was 40%. The average
power coupled into the fiber was about 3.8 W. Less than 10% of the power was
converted to Raman wavelength. The input polarization was aligned along the fast
axis of the fiber to maintain linearly polarized output. The output from the fiber
was collimated by a 20x microscope objective lens. The spectral widths of the
optical pulses were measured by a monochromator with a resolution of 0.06 nm.
Figure 50 shows the broadened spectrum of the pulse emerging from the fiber.
The FWHM spectral width of the output pulse was 8 nm. The spectral width of the
input pulse was 0.3 nm. The substantially broadened spectrum was caused by the

self-phase modulation of the pulse in the fiber. The sharp peak in the center of the
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Figure 50: Broadened spectrum of the pulse emerging from the 85 cm length of
fiber.
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spectrum is the cw power of the Nd:YLF laser, which is due to incomplete mode-
locking of the APM process. These spectrally broadened pulses were temporally
compressed by a dispersive delay line which is a combination of a grating and a
right-angle prism, as is shown in Fig. 51. The grating had a groove frequency of
1150 lines/mm (American Holographic AH-PC-1500-P1). The angles of incidence
and diffraction 4 and 4’ were approximately 40 and 30 degrees, respectively. The
diffracted beam was reflected by a right-angle prism to the grating with a lateral
shift. The right-angle prism was mounted on a translation stage in order to adjust
the separation between the grating and prism. The pulsewidth of the compressed
pulse was monitored with an autocorrelator using noncollinear second-harmonic
generation with a resolution of 50 fs.

Figure 52 shows the autocorrelation trace of the compressed pulse while the
separation between the prism and the grating was 4.5 cm. The 690 fs FWHM
of the autocorrelation trace corresponds to a pulsewidth of 450 fs with a time-
bandwidth product of 1.07 assuming sech? pulse shape. The diffraction efficiency
of the grating was only 75% for p-polarization at 1053 nm wavelength because the
grating was optimized for use at 1550 nm wavelength. With the reflection losses
from the uncoated prism, the throughput efficiency was limited to ~ 40% and only
1.4 W average power was available in the compressed pulses. Since the optical
beam only passed through the grating twice, the astigmatism due to the spectral
dispersion was not eliminated in this case. The spatial profile was a 45° tilted
elliptical shape.

For second harmonic generation, the compressed 450 fs optical pulses at 1053 nm

were focused into a KTP crystal using a lens with a 5-cm focal length. Due to
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Figure 51: The arrangement of a grating-prism disperisve delay line
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Figure 52: Autocorrelation trace of the compressed 1053 nm pulse
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Figure 53: The spectrum of the 527 nm pulses generated by second harmonic
generation of 450 fs pulses at 1053 nm
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Figure 54: The autocorrelation trace of the 527 nm pulses generated by second
harmonic generation of 450 fs pulses at 1053 nm

| 129




the losses of all the mirrors and the lens, only 1 W of average power was sent
into the crystal. The dimension of the KTP crystal is 3 x 3 x 5 mm. Figure 53
shows the optical spectrum of the 527 nm pulses generated by the second harmonic
generation of the 450 fs pulses at 1053 nm. The FWHM spectral width was 2 nm.
The cw background observed in the spectrum of 1053 nm APM Nd:YLF pulses
was eliminated in the SHG spectrum. Figure 54 shows the autocorrelation trace
of 527 nm pulses. The 520 fs FWHM of the autocorrelation trace corresponds to a
pulsewidth of 340 fs woth a time-bandwidth product of 0.73 assuming sech? pulse
shape. However, the average power of the 527 nm pulses was only 150 mW and
the conversion efficiency was only 15%. This low conversion efficiency was mainly
due to the astigmatism of the beam profile. The highly chirped 1053 nm pulses

may also limit the conversion efficiency.

7.3 Pulse Compression of Picosecond Pulse at 527 nm

The frequency-doubled 4.5 ps pulse at 4 W of average power was obtained from the
second harmonic generation of the APM Nd:YLF pulses. These frequency-doubled
pulses were coupled into a slightly multi-mode fiber using a 20x microscope objec-
tive lens. The core diameter of the fiber is 4 um. No optical isolator was needed
since the SHG crystal was a very good optical isolator. Typical coupling efficiency
was 35%. Up to 1.4 W of average power was coupled into the fiber. The tips of
the fiber were cleaved cleanly without polishing the surface. The output beam was
collimated by another 20x microscope objective lens.

A 2 m long fiber was first used in the experiment. However, almost 35% of the

power coupled into the fiber was converted to Raman Stokes. Figure 55 shows the
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Figure 55: The spectrum of the output pulse emerging from the 2 m length of
fiber.
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Figure 56: Average output power of the 527 nm and the first Raman Stokes emerg-
ing from a 2 m long fiber as a function of the average power coupled into the fiber
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optical spectrum of the output from a 2 m long fiber. It is interesting to notice
that the spectrum of Raman Stokes reflects the Raman gain profile of the fiber and
the spectrum between the 527 nm pump and 540 nm Raman Stokes is possibly
caused by four wave mixing in the fiber. The shape of spectrum indicates that the
pulse spectrum was substantially broadened due to self-phase modulation before
the Raman effect started. Figure 56 shows the average output power of 527 nm and
540 nm Raman Stokes emerging from a 2 m long fiber as a function of the average
power coupled into the fiber. The Raman threshold was at about an average power
level of 560 mW coupled into the fiber and the output 527 nm power was clamped
to a power level of 900 mW.

In order to reduce the Raman conversion, a 65 cm long fiber was then used
in the experiment. The Raman threshold was increased to about 1 W average
power coupled into the fiber. About 220 mW was converted into Raman Stokes.
Figure 57 shows the optical spectrum of the output pulse emerging from the 65 cm
long fiber. The FWHM spectral width of the output pulse was 4.5 nm. Due
to the lack of available grating at 527 nm wavelength range, a prism pair was
used as the dispersive delay line. Figure 58 shows the arrangement of the prism
pair dispersive delay line. The prism used in the experiment was the Brewster’s
angle dispersing prism made by Optical For Research(ABS-15). The light was
retroreflected through the prism pair. The Raman Stokes component was blocked
from reflecting back. The separation between the apex of the prisms was adjusted
to achieve pulse compression.

Figure 59 shows the autocorrelation trace of the 527 nm compressed pulses

while the separation between prism apex was 75 cm. The 690 fs FWHM of the
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Figure 57: The spectrum of the output pulse emerging from a 65 cm long fiber.
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COMPRESSED PULSES

Figure 58: The configuration of the prism pair dispersive delay line
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Figure 59: The autocorrelation trace of the 527 nm pulses exiting the fiber prism-
pair pulse compressor
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autocorrelation trace corresponds to a pulsewidth of 450 fs with a time-bandwidth
product of 2.17 assuming sech? pulse shape. This corresponds to a compression
factor of 10 and the large time-bandwidth product indicates the pulse was highly
chirped. The total available output power after the pulse compressor was 500 mW
due to the losses of all the optical components and the depolarization in the fiber.

The spatial profile of the output beam was elliptical with an aspect ration of 1:3.

7.4 Threshold Study of Femtosecond OPO

As described in section 3.2.3, the power threshold of the KTP OPO will be reduced
to about 140 mW if the OPO is pumped by 500 fs pulses. The 450 fs pulses at
527 nm described in section 7.3 were used as the pump pulses in the threshold
study of the femtosecond OPO. The experimental setup was the same as that
described in section 3.2.3.

To avoid the damage of the second-harmonic-generating KTP crystal and the
tips of the fiber used in pulse compression, the output of the APM Nd:YLF laser
was chopped with a 12:1 duty cycle. Again, the parametric fluorescence was de-
tected to help the alignment of the OPO cavity. Due to the low average pump
power available, the single pass fluorescence signal leaking from the output coupler
was only 0.03 mV while the noise level was 0.01 mV. When the feedback path inside
the cavity was unblocked, the fluorescence signal increased to 0.13 mV. However,
no oscillation was achieved while the output coupler mirror was moved from —1.5
to 1.5 cm with respect to the zero detuning point of the picosecond OPO.

The actual average power sent into the OPO KTP crystal was about 350 mW.

According to the simulation, this amount of pump power should be large enough
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to overcome the power threshold of the OPO. However, two major reasons may
have some serious effect upon the threshold of the OPO. First, the 527 nm pump
pulses were highly chirped, which may decrease the efficiency of parametric gener-
ation. Second, the spatial profile of the 527 nm pump pulses were elliptical, which
decreased the conversion efficiency due to the poor spatial overlapping with the
cavity mode.

In order to improve the quality of the pump pulses, several approaches can be
used. First, a polarization-preserving fiber can be used to increase the throughput
efficiency of the pulse compressor. Second, a grating pair designed for 527 nm
can be used to obtain a better spatial profile. Third, the core diameter and the
length of the fiber used in the pulse compressor can be optimized in order to
achieve linear chirping across the pulse emerging from the fiber, which may lead

to a time-bandwidth product close to transform limit.
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8.0 Conclusions

8.1 Summary

A theoretical model for calculating the effective gain of parametric generation and
amplification of ultrashort optical pulses has been developed and presented in this
project. This model takes into account both spatial and temporal effects, including
spatial beam broadening, temporal pulse broadening, spatial walk-off of the pulse
beams, and temporal walk-off of the parametrically interacting pulses. A closed-
form analytical formulation is obtained for the effective interaction length, the
parametric efficiency coefficient, and the effective gain of the parametric process.
From the numerical examples given above and from maximizing the value of
b with the dependence of l.gs on w3, and Atz included, we come to following

conclusions:

1. When no significant temporal pulse broadening in the crystal is expected,
the optimal crystal length is I, = lop = 3,,. This crystal length depends on

the pulsewidth and the focused beam waist.

(a) For a given pump pulsewidth, the required crystal length can be reduced
by focusing the beams tighter to reduce l,, through the reduction of I,,.
This can be done until the effect of spatial beam broadening becomes
important, which then may or may not reduce the efficiency, depending
on the specific parameters characterizing the situation. In any event,

the beam should be focused to the extent that l,, < l;,, if possible.




Beyond this, the efficiency increases from further focusing the beams,

only at a slower rate, and quickly saturates.

(b) If the pump pulsewidth can be varied, reducing the pulsewidth can
increase the parametric efficiency if l5, < ;1. The maximum parametric
efficiency occurs when I, = l;,. Beyond this, further reducing the
pulsewidth without reducing the beam waist size actually hurts the

parametric efficiency.

(c) For short pulses, the optimal condition is l,, = ly,. For long pulses, one
can do slightly better by having s, < li,. The combination of wzo and

At for 1y, = Iy, can be found from Fig. 9.

2. For extremely short pulses, temporal pulse broadening in the crystal can be
important. In this case, the optimal crystal length is determined based on
the acceptable broadening in the pulses rather than on the consideration
of the maximum parametric efficiency alone. Generally speaking, to avoid
significant pulse broadening, the crystal length chosen is smaller than that of
the maximum parametric efficiency. For such short pulses and short crystals,
the parametric efficiency can increase quadratically with the decrease of the

beam waist size. Therefore, the beams should be focused as tight as possible.

3. As far as the noncollinear phase matching geometry is concerned, theoretical
formulations presented in Section 2.0 still apply. Different phase-matching
geometries affect the values of I, and [, through changing values of o, g,
and a;. As we have mentioned in the previous section, the effects of non-

collinear phase matching geometry is simple and elegant. First, to increase
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the parametric efficiency, the value of l,,, needs to be maximized. Second,
the more a parametric process is dominated by the spatial effects, the more
effective the use of noncollinear phase-matching geometry is in improving its

efficiency.

We have assumed that the pulses are not chirped at the input surface of the
nonlinear crystal throughout this paper. In real experimental situations, the pulses
are often chirped. This does not pose a problem to our theoretical framework. Nor
does it invalidate our general conclusions. However, it does change the quantitative
numerical results. Extension of our formulation to chirped pulses is straightfor-
ward, but mathematically tedious. It is thus not done in this project. It can be
done, if necessary, by replacing At% in Eq. 12 with At?,/(14iCjo) where Cjo is a
constant representing the initial chirping in pulse j at the input, and then carrying
out the rest of the theoretical calculations outlined in Section 2.0.

In the numerical examples presented in Section 3.0, we have assumed for sim-
plicity that all three parametric beams are focused to the same beam waist size
and all three pulses have the same pulsewidth at the input. Therefore, all the
quantitative results demonstrated there are subject to this condition. Again, in
real experimental situations, this is rarely the case, particularly when there is a
large difference between the signal and idler wavelengths. However, this does not
invalidate our general conclusions either. In reality, although the beam waist sizes
are often different, they are kept very close to one another for maximum efficiency.
Similarly, the signal and idler pulsewidths typically vary within +50% of the pump

pulsewidth, as has been predicted by previous theoretical work and verified by all
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the reported experimental work. In applying our theory to any experimental re-
sults of known beam waist ratios and pulsewidth ratios, it is only necessary to
use the experimentally known values for these ratios in the evaluation of relevant
parameters.

In this research project, parametric generation of wavelength-tunable ultrashort
optical pulses was also demonstrated using an additive-pulse mode-locked Nd:YLF
laser. A KTP-based picosecond optical parametric oscillator synchronously pumped
by frequency-doubled APM Nd:YLF laser pulses was demonstrated. Above the
threshold of 900 mW average pump power, continuous tuning was demonstrated
from 851 to 938 nm in the signal branch and from 1200 to 1381 nm in the idler
branch. At three times the threshold, 3.2 ps signal pulses with an average power of
83 mW and 2.4 ps pulses with an average power of 280 mW were obtained. Char-
acteristics of this OPO have been studied in detail. The significance of the OPO
is that it is the first demonstration of OPO synchronously pumped by a flashlamp
pumped APM Nd:YLF laser and it offers a possibility to produce wavelength-
tunable pulses which cover the 600 to 4500 nm transmission window of KTP by
simply using one OPO without intracavity doubling.

Femtosecond pulse generation from Nd:YLF laser was presented. Two different
approaches to generate femtosecond frequency-doubled Nd:YLF laser pulses were
compared. The efforts to produce femtosecond OPO and to generate wavelength-

tunable optical pulses at the wavelength range of 10-11 gm were also included.
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8.2 Future Research

The method we have presented for analyzing the OPO systems is very powerful
and versatile. Since it accounts for both the spatial and temporal effects, one can
approximate various experimental parameters to a substantial accuracy. Like any
other theoretical research, this method is not yet fully explored and can be used in
various other applications. In this project, only one kind of nonlinear crystal, KTP,
was used to demonstrate the validity of our method. Other important nonlinear
crystals, such as BBO and LBO for efficient parametric generation from ultraviolet
to near-infrared and AgGaS, and AgGaSe; for efficient parametric generation from
near- to mid-infrared, can also be characterized by employing our method. We can
also extend this theory to the most fundamental phenomenon of nonlinear optics:
second harmonic generation (SHG). SHG of ultrashort pulses can be modeled using
this method with some modifications to the theory and similar simulations can be
performed to better understand the process. Many other nonlinear crystals used
for SHG, of course, can again be considered using this theory.

Theoretical models without the verification by experimental results are not
practical. Therefore, many experiments can be performed and their parameters
compared with the theoretical values for the experimental parameters. Given the
many simplifying assumptions made in obtaining the numerical results presented
in this report, these results, when used to predict the threshold of synchronously
pumped OPOs in our laboratory, are found to be in very good agreement with
experimental results [76].

The cw mode-locked Nd:YLF laser in our laboratory can generate high-peak

power ultrashort pulses with pulsewidth from 30 ps to a few hundred femtosecond
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Figure 60: The Schematic diagram of the current available laser pulses(solid line)
and the future systems(dotted line).

at two different wavelengths. The 527 nm frequency-doubled pulses can be used as
the pump laser of the visible to near-infrared range OPO. The 1053 nm pulses can
be used as the pump laser of the near- to mid-infrared range OPO. With different
crystals and different sets of optics, ultrashort pulses tunable from visible to mid-
infrared could be generated by one pump laser system. Figure 60 summarizes the
currently available pulses from our system and the future possible systems that
could be developed.

A picosecond OPO is relatively difficult to build due to the high average power
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threshold in comparison with a femtosecond OPO. However, generation of fem-
tosecond pump pulses from a Nd:YLF laser with good pulse and beam quality and
high average power is not trivial. Many parameters of the pulse compressor have
to be fine-tuned in order to improve the throughput efficiency and pulse quality.

In order to extend the wavelength of the OPO into mid-infrared range, the
absorption of the crystals must be overcome first. Since no theoretical study has
been done to investigate the influence of the crystal absorption upon the efficiency
of the parametric generation process, it would be a very important work to find
out the effect of crystal absorption upon the threshold of OPO.

Optical parametric oscillators are powerful research tools and have been increas-
ing their number of applications at a fast rate. Several commercialized products,
for example devices capable of tuning from the ultraviolet to the near-infrared
region, have already been on the market. Possible applications using OPOs in
myriad disciplines are endless. As we near the end of the 20th century, we expect
to find more applications of laser and nonlinear optical devices in the near future.
It is hoped that the results in this report will play an important role in further

research and development of OPOs.
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A Spectral Measurement of The Noise in Continuous-

Wave Mode-Locked Laser Pulses

A theoretical analysis of the noise of a periodic optical pulse train is presented.
It is shown that the amplitude fluctuation, the pulsewidth fluctuation, the pulse
timing jitter, and the cross correlations between any two of these three noise pa-
rameters can be separately quantified by comparing the noise power spectra of the
fundamental pulses and those of the second harmonic pulses. The noise character-
istics of an actively mode-locked Nd:YLF laser are presented to demonstrate this

technique.

A.1 Introduction

Characterization of the noise in the optical pulse train of a continuous-wave (CW)
mode-locked laser using a spectral technique was first presented by von der Linde[58].
von der Linde’s noise model is under the assumptions that the pulsewidth has no
fluctuation, that the pulse timing jitter and the amplitude fluctuation (peak inten-
sity fluctuation) is small, and that the amplitude fluctuation and the pulse timing
jitter are not correlated. Under these assumptions, the pulse-energy fluctuation
can be interpreted as the amplitude fluctuation. Using this model, only the power
spectral density of the pulse amplitude fluctuation and that of the pulse timing
jitter can be deduced from the power spectra measured with the combination of
a photodetector and a spectrum analyzer. Several research groups have used this
power-spectrum technique to measure the amplitude fluctuation and the pulse tim-

ing jitter of several CW mode-locked lasers[77, 59, 60, 61, 62, 78, 64, 79, 80, 81,
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82, 83, 84, 63]. For most mode-locked lasers, however, there is no justification
that the pulsewidth fluctuation and the cross correlations between the pulsewidth
fluctuation and the amplitude fluctuation are negligible[85]. When the pulsewidth
fluctuation and the cross correlations between the noise parameters are considered,
there is a distinction between the pulse-amplitude fluctuation and the pulse-energy
fluctuation. In this general condition, the amplitude noise defined in the earlier
papers [58, 59, 60, 61, 62, 63] is not really the amplitude fluctuation of the pulse
peak intensity, but is rather the pulse-energy fluctuation of the pulse. Although
measurements of the power spectra of higher harmonics were suggested to obtain
more detailed information of laser pulsewidth fluctuation[58], no theoretical anal-
ysis has been carried out. Nor has any characterization prolcedure using the higher
harmonics to deduce more detailed information on the laser noise been proposed.
Recently, we have demonstrated the possibility of deducing various noise parame-
ters of a mode-locked laser pulse train by comparing the noise power spectra of the
fundamental and the second harmonic pulses[86]. In this paper, we carry out the
theoretical analysis and present the method for separately quantifying six key noise
parameters of a pulse train, including the amplitude fluctuation, the pulsewidth
vﬂuctuation, the pulse timing jitter, and the cross correlations between any two of
these three noise parameters. The experimental results of the noise parameters of
an actively mode-locked Nd:YLF laser system are also presented to demonstrate

this technique.
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A.2 Theoretical Derivation

Harmonic signals of a laser pulse train offer a convenient way to extract more in-
formation about the pulse train itself due to the nonlinear nature of the harmonic-
generation process. In order to fully separate various noise parameters, includ-
ing the amplitude fluctuation, the pulsewidth fluctuation, the pulse timing jitter,
and the cross correlations between the these noise parameters, of a given laser
pulse train, one can measure both the pulse train itself (the fundamental) and
its frequency-doubled signal (the second harmonic). When the second harmonic
is generated at the low-efficiency limit without saturation, it is quadratically de-
pendent on the instantaneous fundamental pulse intensity. In this case, the noise
parameters of the second harmonic pulse train are determined by those of the
fundamental pulse train through very simple relations. Because of the nonlinear
nature of the harmonic generation process, these relations yield additional inde-
pendent equations connecting the noise parameters, thus allowing one to deduce
these parameters separately. In the following analysis, we discuss the noise mod-
els for the fundamental and the second harmonic, the approximations made in
the analysis, the corresponding power spectra of the fundemental and the second

harmonic, and the effect of the response of the detection system.

A.2.1 Noise Model

The intensity of a periodic pulse train can be modeled as:

t——nT——Tn)’ (73)
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where h,(t) is the normalized dimensionless intensity shape function of the individ-
ual pulses, T is the average repetition period of the pulses, T, is the pulse timing
jitter, Iy is the average value of the intensity amplitude, I;, describes the intensity
amplitude fluctuation, At, is the average full width at half-maximum (FWHM)
pulsewidth, and the sequence Aty describes the pulsewidth fluctuation. The max-
imum of the intensity shape function hi(t) is normalized to unity. In the limit of
negligible pump depletion and no saturation for the second-harmonic generation
process, the intensity of the second harmonic of this fundamental pulse train is

quadratically dependent on that of the fundamental and can be modeled as:
t—nT — Tn)

Aty + Aty

t—nT — Tn)

Atl + Atl'n ’

+00
Lt) = K ) (Il+Iln)2h%(

n=-—0oo

+o00
- KY (11+11n)2h2(
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where K is a constant determined by the efficiency of the second-harmonic gener-

ation process and hy(t) = h3(2).

A.2.2 Approximations

In our analysis, we assume that the stochastic sequences, Iy, Ty, and At;,, are
stationary and the intensity I;(t) is a cyclostationary function. Under the assump-
tions that the quantities Iy,/Ii, Atin/Aty, and 27 f, T, are all much less than
unity, where f,, is the maximum frequency measured, and that the function h4(?)
has a convergent Ta:ylor series expansion about the point ¢=0, it is shown in Ap-
pendix B that the intensity function I1(t) can be approximated by the following

expansion:

wo-ip [+ (5
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where h; and k; are the first- and second-order time derivatives of the pulse shape
function, respectively. Similarly, it can be shown that the second harmonic inten-

sity function I5(t) is approximated by the following expansion:
2I I t —nT
_ 2 in in
L(t)=KEY [(1 P ) B ( o )

(T]n + 2[1,-,T1n _ AtlnTln) h:2 (t - nT)

I Aty Aty
- (- S i) oy, (2T
i () Sy (520
5 ()] .

A.2.3 Power Spectra

The power spectra of both the fundamental and second-harmonic pulse trains can
be obtained from the Fourier transform of the time-averaged autocorrelation of
Ii(t), where k = 1 for the fundamental and k = 2 for the second harmonic. The
detailed derivation of the time-averaged autocorrelation and the power spectrum
of I;(t) is given in Appendix C. The power spectra of the optical signal I;(t) can
be approximated by the following equation:

Pu(w) ~ KD :‘,’}2 A2 |Hy(Aw)2 S {27r5 (w - ngj’,ﬁ)
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where k = 1 for the fundamental and k = 2 for the second harmonic, Hi(w) is the
Fourier transform of the pulse shape function hi(t), S7(w) is the power spectral
density of the normalized amplitude noise I1,/I1, Sa:, (w) is the power spectral
density of the pulsewidth fluctuation Aty,, Sr(w) is the power spectral density
of the pulse timing jitter noise T,. S,, ;;(w) is the power spectral density of
the cross correlation between the pulsewidth fluctuation At;, and the normalized
amplitude noise I;,,/I; the other two cross correlation parameters, .‘3':,,;1 and Stat,,
are similarly defined. If the temporal pulse shape is symmetric, both H; (At w)
and Hy(Atjw) are real functions. For most pulse shapes of interest,

2 d

-A—t—%‘galn Hk(Atlw) ~ —,Bk ‘W (78)

where f; are pulse shape-dependent constants. Then, the power spectra can be

further simplified to have the following form:

P = 2(’°'1)Iik. 2 2 _ 2n
L(w) = K T2 Aty* |Hi(Atyw)| E 2ré | w no
ey, Son (0=nF) |, Re[Sz (o= n¥)]
25~ - N— 11y
+k S’I1 (w n T) + AL + 2k e
om Im [Sra, (w—nZ)]
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Pulse shape, h(t) B : B2

exp(—41n2-t?)

72/ 1 \? ([=? 1 \?

Table 2: B of the Gaussian and sech? pulse shape

o)< )

— w? kBrAt Re [SAtlﬁ (w - nz%)]} . (79)

The values of B; for the Gaussian and hyperbolic secant-squared pulse shapes,
which are the most commonly seen optical pulse shapes, are summarized in Table
2.

In order to explain the physical meaning of each terms in the power spectra we

obtian, we further define the normalized pulse-energy fluctuation as[85]

Eln Iln Atln

"ET = I_1 Atl . (80)
By using this definition, the power spectra can be expressed as:
2(k— 1) 2 2 27
P(w) = K At |Hy(Atyw))? Z 2r6{w—n— )+ S5 |(w—n7
T2 T T
2 2
+w-STE~k(w——n%)+w - Sy, (w—n%)}, (81)
where the normalized energy noise spectral density, SE\(w), is defined as
@) , o, Re[Saun )]
s =g st @)
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the cross-correlation noise spectral density, STE:(“’)’ is defined as

Im [STA 1 (w ]
Siz (@) =2k - Im S ()] + 2A—ti), (83)
and the total jitter noise spectral density, Sy, (w), is defined as
S5.(w) = Sr(w) = BiSan (w) — kBeAtsRe [S,, 7(w)] - (84)

It is seen that the fluctuation of pulsewidth contributes to both Sz~(w) and Sy, (w),
and the noise in the second harmonic pulses is enhanced due to its nonliear de-
pendence on the amplitude fluctuation. If the pulsewidth fluctuation and the
cross correlation noise are negligible, then Sg~(w) = Sp(w), Sz (w) = 0, and
S5 (w) = St(w). In this case, Eq. 81 for the fundamental is reduced to that used

so far in the literature [58, 59, 63, 85].

A.2.4 Response of The Detection System

When an optical pulse train is incident on a photodetector, the photocurrent reg-

istered by the detection system is given by
. +w
in(t) = / au(t — ) I(t")dt', (85)

where gi(t) is impulse response function of the detection system, including the
photodetector, any electric transmission cables, and the spectrum analyzer. It

follows that the truncated power spectrum of this generated photocurrent is given

by
P, (w) =27 | gr(w) | P (w), (86)

where gi(w) is the Fourier transform of gi(t). Within the bandwidth of gi(w), the

truncated power spectrum of the photocurrent, P;, (w), can represent the power
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spectrum of the optical signal. Under the condition that the maiximum frequency
measured is smaller than (2rAt;)~?, Hi(At,w) can be taken as a constant. The
measured power spectrum of the photocurrent within the bandwidth of the detec-

tion system can be derived from Eq. 81 to yield

27

2
P, (w) = Pg, Z {27r5 (w - n—f) + SE: (w - n%)
27 27
+w- S (w—n?> +w?- Sy, (w—-n?)}, (87)

where Pg, is a constant which represents the carrier power.

A.3 Measurement Method

In experiments, we usually measure the power spectrum in the unit of the frequency
f(Hz) instead of that of the radial frequency w. It is convenient to define the power

spectrum in terms of frequency f for experimental purposes. Using Eq. 87, we have

Po(f) = Po, S{6(f —nfo) + Sg:(f —nfo)
+ @nnf)?- Sypf —nfo) + (@nnf)?- Sa(F—nfo)}.  (88)

where f = w/2m, fo(= 1/T) is the repetition frequency of the pulse train, and

k = 1,2 for the fundamental and second harmonic, respectively. Using Eq. 88 we

can define the nth harmonic side-band noise spectral density of the fundamental

and the second harmonic pulse trains as

Sm(f) = Sg(f)+ @2rnfo) - Spz(f) + (2rnfo)? - Sa.(f), (89)

where n is the harmonic number of the power spectrum, f is the frequency offset

to the nth carrier frequency,

t Re[S,, £
! a0 = wsyn+ Sall) s Plma g
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is the normalized energy noise spectral density,

Smh) = 20k Tnlsg (1) + ozesllly o1)

is the spectral density of the cross correlation between the pulse timing jitter and

the normalized energy fluctuation, and

S1(f) = S(f) — BeSan(f) — kBrAtiRe[Sy, 7 (f)] (92)

is the total jitter noise spectral density.

In experiments, the total noise power for various harmonic order n can be
obtained by integrating the side-band noise spectral density Sy, (f). By integrating
Eq. 89, we get following relation for the total noise power at the harmonic order

n:
o,r‘:k = a%: + (27nfo) - Crg; + (27n fo)? - ‘7-21:; (93)

where 0,2%, 05 Olis and CTE; are the total noise power, the rms normalized energy
fluctuation, the rms total jitter, and the cross correlation between the pulse timing
jitter and the normalized energy fluctuation, respectively. Assuming the noise
spectral density is symmetric, the parameters 0% Tli> and CT}’«:I are, respectively,

defined by the following equations:

fu Sa(f) ¥
w = [ BFY] - |

[2/ffH &g—)df]% _ [l [ Sute) dw]%

aJ

k L 1.2B T Jwy, 1.2B
fu STE:(f) 1 fwn STE:(W)
Cre = Q/n 128 ¥ = ;r./;;,, 12 % (94)

where 1.2 is the factor for the equivalent noise bandwidth of the spectrum analyzer,

B is the resolution bandwidth, and f; and fy are the lower and upper limits of
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the frequency offset[63]. The values of 0% Ol and Cpz- can be determined by
measuring the total noise power o2, of various harmonic order n since the total
noise power is a quadratic function of the harmonic numbers n, as can be seen in
Eq. 93.

By integrating Eqs. 90-92 for the fundamental and the second harmonic over a

given frequency range, we get the following equations:

o} = of +A‘Xl2 —A%—CM;, (95)
ok = 4ok + A‘Zg + A4t Cos i (96)
Cime = Crz+ CZ:‘I“, (97)
Crz; = 2077 + CAT‘:‘, (98)
0}, = o5 —Pioa, — BAtCy, s (99)
05, = oF —Paod, — 28.44C, 7, (100)

where the Of 5 OAn, OT, C Al CTﬁ’ and Cra:, are, respectively, the rms nor-
malized pulse-amplitude fluctuation, the rms pulsewidth fluctuation, the rms pulse
timing jitter, the cross correlation between the pulsewidth fluctuation and the nor-
malized amplitude fluctuation, the cross correlation between the pulse timing jitter
and the normalized amplitude fluctuation, and the cross correlation between the
pulse timing jitter and the pulsewidth fluctuation. The parameters Of» OAtys OT,

C At D) CTT}’ and Cray, are defined by the following equations:
1
fu Sg(f) w Sp(w)  ]°

’n = [2/fL 128 f] - [r/w,, 128 ¥

_ w Sae () 1F _[L [ Sau() , 1P
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Because there are six equations (Egs. 95—100) for six unknown quantities, OF s Oaty)

C.z

or, C TI ’

Aty and Cray,, the noise characteristics of a mode-locked laser can be

completely characterized when the values of 05 Oy CTE’

Crg;» 00, and 0y, are
deduced from the measured total noise powers o,, and oy, for various harmonic
orders n by taking measurement on both the fundamental and second-harmonic
pulse trains.

If the cross-correlation between T, and I, and that between T, and At,, are

negligible, which is an appropriate assumption for active mode-locking systems|[87],

C.+ =~ Crat, = 0. In this case, C,.—~ =0 and Eq. 93 is simplified to become
Th 1 TE,;

2 =0 + (2rnfo)’ - 0F,. (102)

O = %

Hence o3 and oy for the fundamental and the second-harmonic pulses can be
obtained by using the previously established power-spectrum technique[58].
this special situation, only four equations (Egs. 95, 96, 99, 100) need to be solved

to obtain the four unknown noise parameters: oy, oat,, 0T, and C The noise

IV

parameters of a mode-locked laser can then be characterized when the values of

o

B OFy O and o, are determined.
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A.4 Experimental Demonstration

The noise power spectra of a Quantronix 416 actively mode-locked Nd:YLF laser
were measured using a p-i-n high-speed photodetector terminated directly into a
Hewlett-Packard 8650A spectrum analyzer. The 3-dB bandwidth of the detection
system including the photodetector and the spectrum analyzer is about 2.9 GHz.
The laser generates pulses at 1.053 pm wavelength with a FWHM pulsewidth of
30 ps at a repetition rate of 76 MHz. The second harmonic pulses at 527 nm
wavelength were generated by sending the fundamental pulses through a KTP
crystal. They have an averaged FWHM pulsewidth of 20 ps.

The noise power spectra of the odd harmonics of both the fundamental and
the second harmonic pulses were measured. The resolution bandwidth, B, of the
spectrum analyzer is 30 Hz for a frequency offset less than 2.5 kHz. The total noise

power o2

2 was calculated by integrating the power spectral density from 50 Hz to

1.5 kHz. The total noise power o2, of different harmonic order n for both the
fundamental and the second harmonic pulses are shown in Figs. 61(a) and (b),
respectively. The total noise power of the second harmonic pulses are higher than
that of the fundamental pulses.

Using Eq. 93, 05, 0y, and CTE: for the fundamental and the second harmonic
pulses can be determined by the dependence of the total noise power a;‘:k on the
harmonic number n. The solid curves in Figs. 61(a) and (b) are the best-fitted
curves of the total noise power o2, as a function of the harmonic number n using
Eq. 93. The values of Ofy OAy, OT, C At T CTE’ and Cra¢, were then deduced
using Egs. 95-100. The results are summarized in Table 3 as Model 1.

It can be seen that the rms pulse-energy fluctuation of the second harmonic
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Figure 61: Total noise power o2 of (a) the fundamental and (b) the second har-
monic pulses of an actively mode-locked Nd:YLF laser. The solid line is the fitting
curve of Eq. 93. The dashline is the fitting curve of Eq. 102.
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05:(%) omx(%) on(ps)  on(ps)  Crz(%-ps) Crz(%-ps)

Model 1 1.0 1.9 1.0 1.2 -0.15 -0.21
Model 2 1.0 1.9 1.0 1.3 - -
07,(%) oan(ps) or(ps) C,, 7(%-ps) Crz(%-ps)  Cray(ps?)
Model 1 4 1.6 1.1 -7 -0.06 -0.03
Model 2 4 1.7 1.1 -8 - -

Table 3: Noise parameters of the fundamental and second harmonic pulses

pulses is higher than that of the fundamental pulses, and the total jitter term of
the second-harmonic pulses is slightly larger than that of the fundamental pulses
as well. Furthermore, it was found that the rms normalized pulse-amplitude fluc-
tuation of is larger than the rms normalized pulse-energy fluctuation oF;- The
rms pulse timing jitter o7 is slightly different from the rms total jitter o in mag-
nitude. It can be seen from Table 3 that there is a strong correlation between the
pulsewidth fluctuation and that of the pulse-amplitude fluctuation because the ab-
solute value of C at,7; 18 comparable to that of the product of oas, and o The
value of C, o1 18 found to be negative, which implies that a pulsewidth fluctuation
that reduces the pulsewidth is accompanied by an intensity fluctuation that in-
creases the intensity amplitude, and vice versa. The values of CTE and Cray, are
also found to be negative. However, their absolute values are much smaller than
those of oo} and oroay,, respectively. Therefore, CTE and Cray, are negligible
in our case, whereas C At is not.

In order to verify that CT;; and Cray, are negligible in our case, Eq. 102 is
used to fit the experimental data in this case. The dashed curves in Figs. 61(a)

and (b) are the best-fitted curves for the total noise power o2, as a function of the

harmonic number n using Eq. 102. The deduced noise parameters are summarized
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in Table 3 as Model 2. The values of Ofs Oay, OT, and C At T differ very little in
both models. These results justified the uncorrelated noise model in our actively

mode-locked Nd:YLF laser.

A.5 Discussions and Conclusion

Although the physical origin of the noise is not discussed in this paper, it can be
shown that the noise power spectra can be further simplified if the the optical
pulse train has certain special properties. For example, in the case of fundamental
soliton pulses, the pulse area is constant and the pulse shape is sech?. We then

have the following realtions:

Lh, _ _An,
2L  Ahy
- SAtl(w)
Sll(w) = 4 AL
SAtlfl(w) 1
—AT = —ESﬁ(w) (103)

The corresponding noise power spectrum becomes

Py(w) = Pck2{27r6 (w— 2?")

n

1\? o
+ (k-3) S (o-n7)
s et(e-D o o)

+ W [ST (w - nz%) + % (k - -;—) Athfl (w - n%—?)]} , (104)

where S is that of the sech? pulses. Because Eq. 104 is a quadratic equation of
w with only three unknown quantities, only the noise spectrum of the fundametal
pulse train has to be measured to deduce all the noise parameters in the case of

fundamental soliton laser pulses.
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In another special case that the pulses have a constant energy, we have the

following relations:

Ly, _ Aty
L Ak
‘ SAfl (w)
Sﬁ (w) = —'Z'Z%—
S, i (w)

The corresponding noise power spectrum becomes

Po(w) = Pg, ) {27r5 (w - n%@)

n

+ (k- 1)2Sﬁ (w — n2—7r>

T
+ w-2k—1)Im [ST,AI (w - nz%)]
+owr [ST (w - n%") + Bulk — 1)AES; (w - n%")] } . (106)

Again, Eq. 106 is a quadratic equation of w with only three unknown quantities
and only one measurement is needed. However,if k=1, S 7, cannot be determined
from Eq. 106. Therefore, the noise power spectrum of the fundamental pulse train
alone cannot be used to determine all the noise parameters, but that of the second
harmonic pulse train can be used to accomplish this objective.

In conclusion, we demonstrated a measurement technique to characterize the
pulse fluctuation noise of CW mode-locked laser pulses. By comparing the noise
power spectra of the fundamental pulses and those of the second harmonic pulses,
the pulse-amplitude fluctuation, the pulsewidth fluctuation, the pulse timing jitter,
and the cross correlations between any two of these three noise parameters of a

mode-locked pulse train can be separately quantified.
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In the pulse train of our actively mode-locked Nd:YLF laser, the rms pulse-
amplitude fluctuation is larger than the rms pulse-energy fluctuation, and the
cross correlation between the pulsewidth and the pulse-amplitude fluctuation was
found to be negative and not negligible. The pulsewidth fluctuation is also not

negligible in comparison to the peak intensity noise and the pulse timing jitter.

B Small Noise Approximations
The intensity of a periodic pulse train is given in Eq. (1) as

t—nT—Tn) (107)

400
L(t) = E (L + Lip)hy (m

n=—oo
Under the assumptions that At;,/At; < 1, that the pulse shape function, hy(2),
has a convergent Taylor series expansion about the point ¢ = 0, and that the pulse
energy is contained within a finite range near the center of the pulse, the pulse

shape function can be approximated by the following function:

t 5 t At, AL,
b (At1+At1n) ~ [Atl (1“ At T At%)]
t Aty, A\ d ¢
~ h (At1> B (Atl + At%)tdthl (At1>

1 A8, 2d2h1( t )
2 At2 dt? Aty

+z (108)

Under the approximation that I;,/I; < 1 and 2 f, T, < 1, where f,, is the

maximum frequency measured, the optical pulse train can be approximated by

wo=is (420 (5)

IlnTn AtlnTn> . (t - TLT)
—(T, - h
(T 7 At, )P\ Ay
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At] Atlz I]Atl Atl
+1Tn2}:1 (t - TI,T) + AtlnTn (t _ nT)’;,.l (t - nT)

2 —
_ (Atln _ Ay, 4 IlnAtln) (t = nT)h (t nT)

. 2 Aty Aty Aty
1 At1n2 2" t—nT
' 3 arr (=) ( o )] . (109)
where
. (t—nT d t—nT
()= ah () (110
and
« (t—nT d? t—nT
b (a) =t (a) )

C Derivation of Power Spectra

The time-averaged autocorrelation function of a cyclostationary process

a(t) = nio a,h(t —nT) (112)
is[88]
T j:_ij R[m]p(r — mT), (113)
where
Ro[m] = E{animan} p(t) = h(t) * h(-1). (114)

Assuming that the stochastic sequences, I1,,, T1,, and At,,, are stationary and

that the intensity function, I(t) , is cyclostationary (or periodic stationary)[88],
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the time-averaged autocorrelation function of I;(t) can be written as

2 oo
=7 3 { (12 m (FE)
R4, [m] T —mT
Az 7 ”'( At >
T—mT
+RT[m]P11( At )
Ry, r[m| T —mT Ry [m] T —mT
T I ”‘”( Aty )" I ”“’( At )
Rra, [m] r—mT\ Rra,[m] T —mT
Aty ”1'1( Aty )— Aty ( Aty )

75 T — mT)
+T2poy ( At

[Atfn I, Aty RIlAtl[m]} (T—mT)
01

+

+

A LA  LAL
lAt%n LAty Ray, g, [m] (7’—mT>
P10

At% I]Atl Atlll
1 A#, (T - mT)

o ae P\ Ay
+1At%n (7’ — mT)
2 A2 PO\ AL
+At1nTn (T - mT)
At, P\ AL
At,T, T—mT
Ay P ( Aty )} (115)
where
RI; [m] = E{I1n+mIln} RAt1 = E{Atln-}-mAtln}
Rp[m] = E{TwmTn} Ryzlm] = E{lin4mTn}
RAtlT[m] = E{At1n+an} RIlAfl [m] = E{I]n+mAt1n} (116)
and

t t —t t . t ./ —t
poo (Zt_l) = M ('AT])*’“ (zz:) pu (A_tl)_hl (‘A—t;)*’“ (A_tl)
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¢ ¢ ¢ C ot ¢
= hl(ZTl)*h‘(Atl) ”‘“(At) b (Atl)*h‘(At1>

(&) =m (55)« [+ (&)
oo (a) = [ (z)] 4 (&)
o (ai) = (30) + 1 (&0)
e (a) = [ ()]« [ (&)
ror (37) = (3) + [0 (=5)]
() =[5 (3] ()
(a) = (z) [ ()]
() = [ (35)] 1 (=)
o (z) = (ag) + [ (5]

o (3) = - )] o (51 o

The Fourier transform of the time-averaged autocorrelation Ry, (7) is the power

spectrum

PI1 (w) ~

I? o
A0 {m ( - n?>

27r) Saw (0—n%) | RelSyz(0 = nF)

+5; (“’ )t T Am At

2T Im[STae, (w— n%“)]
+w-2-Im[S’Ta (w—-nT>]+w-2 Al

2T
2 - — —
+w* - St (w n T )

d
+w - Re [5 In Hl(Atlw)] .

2Sa1, (w — n3E)
At?

_d_ Atlfl (w _2%)
4w - Re [dw In Hl(Atlw) AT, (118)
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where

2.5 (w —ng%) = TZ I‘[ ]exp (—imTw)
> Sa, (w - n:%r = TY Ray [m] exp(—tmTw)
27

= TZ Rr[m] exp(—imTw)

= TY, -T;;[-]— exp(—imTw)

1

)
)
) = TZRAt‘I‘[ ]exp(—z'mTw)
)
)

= T Rray[m]exp(—imTw) (119)
and

Hi(w) = /_ ‘: ha(t) exp(—iwt)dt
(120)

is the Fourier transform of h;(t). Following a similar procedure, the power spec-

trum for the second harmonic can also be derived.
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